Article

Computation method for reachable domain of aerospace plane under the influence of no-fly zone

  • ZHANG Jili ,
  • ZHOU Dapeng ,
  • YANG Dapeng ,
  • LIU Ran ,
  • LIU Kai
Expand
  • 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
    2. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-21

Supported by

National Natural Science Foundation of China (61603363);Aeronautical Science Foundation of China (2019ZC063001)

Abstract

The no-fly zone influences the reachable domain of the aerospace plane in the reentry phase. An ultimate circumnavigation based method is proposed to obtain the reachable area no matter where the no-fly zone is. First, considering the residual flight capability of the aerospace plane after avoidance of the no-fly zone, the sub-reachable domain of the plane is derived from the tangent point between the ultimate circumnavigation trajectory and the no-fly zone. On this basis, the boundary of the reachable domain and the unreachable domain is obtained. Then, classifying and solving algorithms for the possible positions of the no-fly zone within the longitude-latitude profile are given to acquire the sub-reachable domains in different situations. The ray method is used to judge whether the target point is located in the reachable domain. The piecewise predictor-corrector guidance method is applied to realize the feasible target point. Finally, classification results of circular no-fly zones dispersed in the longitude/latitude profile are given in simulation. The influenced reachable domain for each class is also obtained. Simulation results show that regardless of the position of the no-fly zone, the proposed method has good stability in terms of obtaining the reachable domain at any situation. For the target points within the reachable domain, the precision requirement can be satisfied by using the piecewise predictor-corrector guidance method.

Cite this article

ZHANG Jili , ZHOU Dapeng , YANG Dapeng , LIU Ran , LIU Kai . Computation method for reachable domain of aerospace plane under the influence of no-fly zone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(8) : 525771 -525771 . DOI: 10.7527/S1000-6893.2021.25771

References

[1] BENITO J, MEASE K D. Reachable and controllable sets for planetary entry and landing[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3):641-654.
[2] HSU F K, KUO T S, CHERN J S. Landing domain analysis of shuttle re-entry vehicles[J]. International Journal of Systems Science, 1991, 22(7):1145-1158
[3] CHEN S Y. The longitudinal and lateral range of hypersonic glide vehicles with constant bank angle[EB/OL]. (1966-01-15)[2021-04-15].https://www.researchgate.net/publication/235011911_THE_LONGITUDINAL_AND_LATERAL_RANGE_OF_HYPERSONIC_GLIDE_VEHICLES_WITH_CONSTANT_BANK_ANGLE
[4] NYLAND F S. Hypersonic turning with constant bank angle control[EB/OL]. (1965-01-16)[2021-04-15].https://www.researchgate.net/publication/253771278_Hypersonic_Turning_with_Constant_Bank_Angle_Control
[5] 曾夕娟, 钟范俊, 丁学良, 等. 一种可重复使用再入飞行器的覆盖区求解方法[J]. 载人航天, 2017, 23(1):14-20,32. ZENG X J, ZHONG F J, DING X L, et al. Method for landing footprint generation in reusable vehicles[J]. Manned Spaceflight, 2017, 23(1):14-20,32(in Chinese).
[6] 王涛, 张洪波, 李永远, 等. Gauss伪谱法的再入可达域计算方法[J]. 国防科技大学学报, 2016, 38(3):75-80. WANG T, ZHANG H B, LI Y Y, et al. Landing footprint generation of entry vehicle based on Gauss pseudospectral method[J]. Journal of National University of Defense Technology, 2016, 38(3):75-80(in Chinese).
[7] 傅瑜, 杨卫丽, 崔乃刚. 升力式再入飞行器覆盖范围计算分析[J]. 哈尔滨工业大学学报, 2012, 44(11):13-19. FU Y, YANG W L, CUI N G. Calculation of reachable landing locations of lift entry vehicle[J]. Journal of Harbin Institute of Technology, 2012, 44(11):13-19(in Chinese).
[8] 傅瑜. 升力式天地往返飞行器自主制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012. FU Y. Autonomous guidance method for lift transportation vehicle[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese).
[9] 汪雷, 刘欣, 杨涛, 等. 高超声速滑翔式飞行器目标覆盖范围的计算方法[J]. 弹道学报, 2014, 26(1):50-55. WANG L, LIU X, YANG T, et al. Footprint calculation for hypersonic glide vehicle[J]. Journal of Ballistics, 2014, 26(1):50-55(in Chinese).
[10] 冯必鸣, 聂万胜, 李柯. 再入飞行器可达区域近似算法及地面覆盖研究[J]. 航天控制, 2012, 30(6):43-49. FENG B M, NIE W S, LI K. Research on closest-aproach of footprint and coverage for reentry vehicle[J]. Aerospace Control, 2012, 30(6):43-49(in Chinese).
[11] 樊朋飞, 郭云鹤, 凡永华, 等. HGV平衡滑翔式轨迹可达区域计算方法研究[J]. 计算机测量与控制, 2019, 27(5):136-140. FAN P F, GUO Y H, FAN Y H, et al. Footprint calculation of HGV with equilibrium gliding trajectory[J]. Computer Measurement & Control, 2019, 27(5):136-140(in Chinese).
[12] 边九州. 组合动力天基对地打击飞行器轨迹设计与覆盖范围分析[D]. 哈尔滨:哈尔滨工业大学, 2014. BIAN J Z. Trajectory design and coverage aera analysis of the space-based strike aircraft vehicle powered by combined cycle engine[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
[13] GAO C S, JIANG C W, JING W X. Optimization of projectile state and trajectory of reentry body considering attainment of carrying aircraft[J]. Journal of Systems Engineering and Electronics, 2017, 28(1):137-144.
[14] ARSLANTAŞ Y E, OEHLSCHLÄGEL T, SAGLIANO M. Safe landing area determination for a Moon lander by reachability analysis[J]. Acta Astronautica, 2016, 128:607-615.
[15] 赵江, 周锐. 基于粒子群优化的再入可达区计算方法研究[J]. 兵工学报, 2015, 36(9):1680-1687. ZHAO J, ZHOU R. Landing footprint computation based on particle swarm optimization[J]. Acta Armamentarii, 2015, 36(9):1680-1687(in Chinese).
[16] 蔺君, 何英姿, 黄盘兴. 基于差分进化算法的再入可达域快速计算[J]. 中国空间科学技术, 2020, 40(4):54-60. LIN J, HE Y Z, HUANG P X. Fast reentry landing footprint calculation using differential evolution algorithm[J]. Chinese Space Science and Technology, 2020, 40(4):54-60(in Chinese).
[17] WEI X, WANG Y J, LIU L, et al. A method for entry vehicle's maneuver capacity analysis and evaluation[C]//Proceedings of 2014 International Conference on Modelling, Identification & Control. Piscataway:IEEE Press, 2014:326-331.
[18] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1):1-6. WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1):1-6(in Chinese).
[19] 赵泽端, 崔平远, 朱圣英. 火星大气进入段纵向可达区生成的解析同伦法[J]. 宇航学报, 2019, 40(9):1024-1033. ZHAO Z D, CUI P Y, ZHU S Y. An analytical homotopic method to generate the reachable longitudinal area for Mars entry[J]. Journal of Astronautics, 2019, 40(9):1024-1033(in Chinese).
[20] LIANG Z X, CHEN J, REN Z. Feasible zone for planetary entry vehicles[J]. Aerospace Science and Technology, 2018, 79:459-467.
[21] XIANG Y, KUN L. A design method for constellation of lifting reentry vehicles[C]//11th Asian Conference on Chemical Sensors, 2017.
[22] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[23] 王光伦. 高超声速飞行器再入段预测校正制导研究[D]. 哈尔滨:哈尔滨工业大学, 2010. WANG G L. Predictor-corrector reentry guidance for hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese).
[24] PAN L, PENG S C, XIE Y, et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167:42-51.
[25] LIANG Z X, ZHU S Y. Constrained predictor-corrector guidance via bank saturation avoidance for low L/D entry vehicles[J]. Aerospace Science and Technology, 2021, 109:106448.
[26] 章吉力, 刘凯, 樊雅卓, 等. 考虑禁飞区规避的空天飞行器分段预测校正再入制导方法[J]. 宇航学报, 2021, 42(1):122-131. ZHANG J L, LIU K, FAN Y Z, et al. A piecewise Predictor-corrector Re-entry guidance algorithm with No-fly zone avoidance[J]. Journal of Astronautics, 2021, 42(1):122-131(in Chinese).
Outlines

/