NNW-HyFLOW, supported by the National Numerical Windtunnel (NNW) Project, is developed as a domestic independent industrial CFD software for hypersonic flow simulation based on structural/unstructured hybrid grids. It is designed with the basic framework provided by the PHengLEI open source program, and can be used mainly for simulation of thermochemical nonequilibrium effects of high temperature gas, and calculation and analysis of related aerodynamic forces, aerodynamic heat and aerophysical characteristics. The design ideas and framework characteristics of the software are first introduced, including the framework design, data structure, coupling method, parallel computing method, and interface design. Then, the theoretical models, core numerical methods and their implementation employed by the solver are illustrated. Finally, numerical simulations using the software are conducted for several examples including the HEG wind tunnel experiment, RAM-C flight experiment, Electre flight experiment and flight experiment of space shuttle OV102 model. Results shows that the software has the advantages of less code reuse, good functional compatibility, strong expansion capabilities, and flexible interface. Additionally, its current test version already has a good simulation capability for hypersonic nonequilibrium flow, and can achieve high accuracy in prediction and evaluation of thermochemical nonequilibrium effects and their impact on aerodynamic forces, aerothermal environment and plasma distribution characteristics. It is proved that the software can meet the basic requirements of numerical simulation of high-temperature nonequilibrium flow for the complex hypersonic aircraft.
LI Peng
,
CHEN Jianqiang
,
DING Mingsong
,
HE Xianyao
,
ZHAO Zhong
,
DONG Weizhong
. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(9)
: 625718
-625718
.
DOI: 10.7527/S1000-6893.2021.25718
[1] 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京:北京航空航天大学, 2018. HAO J A. Modeling of thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing:Beihang University, 2018(in Chinese).
[2] 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京:北京航空航天大学, 2015. WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing:Beihang University, 2015(in Chinese).
[3] GNOFFO P. Application of program LAURA to three-dimensional AOTV flowfields[C]//24th Aerospace Sciences Meeting. Reston:AIAA, 1986.
[4] NEEL R, GODFREY A, SLACK D. Turbulence model validation in GASP version 4[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003.
[5] 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007:11-12. LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:11-12(in Chinese).
[6] LITTON D, EDWARDS J, WHITE J. Algorithmic enhancements to the VULCAN navier-stokes solver[C]//16th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2003.
[7] NELSON C. An overview of the NPARC alliance's wind-US flow solver[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010.
[8] SCHERRER D, VUILLOT F. MSD/MSDH code applications[C]//1st ONERA-DLR Aerospace Symposium, 1999.
[9] GAO Z X, LEE C. Numerical research on mixing characteristics of different injection schemes for supersonic transverse jet[J]. Science China Technological Sciences, 2011, 54(4):883-893.
[10] GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10):2501-2515.
[11] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing:Beihang University, 1996(in Chinese).
[12] 丁明松. 高超声速非平衡流动的磁流体力学控制数值模拟[D]. 北京:军事科学院, 2019. DING M M. Numerical simulation of magnetohydro-dynamic control for hypersonic nonequilibrium flow[D]. Beijing:Academy of Military Sciences, 2019(in Chinese).
[13] HE X, ZHAO Z, ZHANG L P. The research and development of structured-unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(sup):116-126.
[14] 赫新, 赵钟, 张来平. 结构非结构耦合计算CFD软件HyperFlow初步验证[C]//第15届全国计算流体力学会议论文集, 2012:1282-1287. HE X, ZHAO Z, ZHANG L P. The research and develop-ment of structured-unstructured hybrid CFD software HyperFLOW[C]//The Proceedings of the 15th Chinese CFD Conference, 2012:1282-1287(in Chinese).
[15] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[16] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2):210-219. ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219(in Chinese).
[17] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11):2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383(in Chinese).
[18] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005. ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang:China Aerodynamics Research and Development Center, 2005(in Chinese).
[19] KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-III:A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics[R]. Office of Scientific and Technical Information (OSTI), 1996.
[20] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA Reference Publication 1232[R]. Washington, D.C.:NASA, 1990.
[21] DUNN M G, KANG S W. Theoretical and Experimental Studies of Reentry Plasmas:NASA-CR-2232[R]. Washington, D.C.:NASA, 1973.
[22] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
[23] VOS J B, LEYLAND P, VAN KEMENADE V, et, al. NSMB Handbook 5.0[M]. NSMB Handbook, 2003.
[24] HANNEMANN K. High enthalpy flows in the HEG shock tunnel:experiment and numerical rebuilding (invited)[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[25] SCHRAMM J M, HANNEMANN K, BECK W, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG[C]//22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2002.
[26] GRANTBAM W L. Flight results of a 25000-foot-per-second reentry experiment using microwave reflectomters to measure plasma electron density and standoff distance:NASA TND-6062[R]. Washington, D.C.:NASA, 1970.
[27] JONES W L, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second:NASA TND-6617[R]. Washington, D.C.:NASA, 1972.
[28] MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 andextrapolation to flight[C]//28th Joint Propulsion Conference and Exhibit. Reston:AIAA, 1992.
[29] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5):489-499.