An efficient engineering method to evaluate fatigue buckling life of structure on pure shear is proposed based on detailed fatigue rate value. The typical panel test specimen applies a new design concept of integral inserted plate to avoid the failure of structure on non-critical zone in the process of diagonal tensile loading; Experimental results verify the feasibility of the proposed fatigue buckling model; The failure mechanism of structure on fatigue buckling and the correlated character of crack growth are analyzed to provide a technical support for aircraft anti-buckling design. This research illustrates that fatigue buckling failure is mostly ascribed to the effects of bending stress and shear stress on rivets. Once the structure is cracked, crack propagates along the vertical direction of buckling wave. When it arrives adjacent to the wave center, the growth rate excessively increases; the critical buckling load is decreasing with loading cycles increased. The proposed fatigue life evaluation method provides a convenient engineering algorithm for the fatigue evaluation of structure at post-buckling state.
SU Shaopu
,
CHANG Wenkui
,
CHEN Xianmin
. Fatigue buckling test and analytical approach of aircraft typical panel structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(5)
: 225219
-225219
.
DOI: 10.7527/S1000-6893.2021.25219
[1] 张彦军, 朱亮, 杨卫平, 等. 舰载机机身加筋壁板屈曲疲劳试验[J]. 航空学报, 2019, 40(4):622276. ZHANG Y J, ZHU L, YANG W P, et al. Buckling fatigue test of fuselage stiffened panel for carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622276(in Chinese).
[2] 中国飞机强度研究所. 航空结构强度技术[M]. 北京:航空工业出版社, 2013:176-180. Aircraft Strength Research Institute. Aircraft structure strength technology[M]. Beijing:Aviation Industry Press, 2013:176-180(in Chinese).
[3] 石永久, 王元清, 程明, 等. 铝合金薄腹板梁的抗剪强度分析[J]. 工程力学, 2010, 27(9):69-73. SHI Y J, WANG Y Q, CHENG M, et al. Analysis of shear strength of thin plate aluminum girders[J]. Engineering Mechanics, 2010, 27(9):69-73(in Chinese).
[4] ARL-GUR J, SINGER J, LIBAI A. Repeated buckling tests of stiffened thin shear panels:TAE No.463[R]. Israel:Israel Institute of Technology Haifa, 1982.
[5] 薛景川, 贺恭泰, 宋湘臣, 等. 薄壁结构剪切屈曲疲劳研究[J]. 航空学报, 1989, 10(12):607-613. XUE J C, HE G T, SONG X C, et al. A study of shear-buckling fatigue for thin-walled structures[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(12):607-613(in Chinese).
[6] 成传贤. 飞机壁板屈曲疲劳试验与结果分析[J]. 机械强度, 1988, 10(3):48-51, 47. CHENG C X. Buckling fatigue testing and analysis of results of aircraft plate[J]. Journal of Mechanical Strength, 1988, 10(3):48-51, 47(in Chinese).
[7] 邢华璐. 金属薄壁板后屈曲疲劳寿命预估[J]. 煤矿机械, 2018, 39(12):75-77. XING H L. Post-buckling fatigue life prediction of thin plate[J]. Coal Mine Machinery, 2018, 39(12):75-77(in Chinese).
[8] HUANG Z T.Influence of web buckling on fatigue life of thin-walled columns[D].Stockholm:Royal Institute of Technology,1994:64-80.
[9] ALINIA M M, DASTFAN M. Cyclic behaviour, deformability and rigidity of stiffened steel shear panels[J]. Journal of Constructional Steel Research, 2007, 63(4):554-563.
[10] SIH G C, LEE Y D. Tensile and compressive buckling of plates weakened by cracks[J]. Theoretical and Applied Fracture Mechanics, 1986, 6(2):129-138.
[11] 肖浩, 胡伟平, 张淼, 等. 薄板的后屈曲损伤分析与疲劳寿命预估[J]. 北京航空航天大学学报, 2015, 41(3):523-529. XIAO H, HU W P, ZHANG M, et al. Post-buckling damage analysis and fatigue life prediction of thin plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):523-529(in Chinese).
[12] 卿光辉. 飞机结构疲劳与断裂[M]. 北京:中国民航出版社, 2015:89-95. QING G H. Fatigue and fracture of aircraft structures[M]. Beijing:China Civil Aviation Publishing House, 2015:89-95(in Chinese).
[13] 郑晓玲.民机结构耐久性与损伤容限设计手册(上册):疲劳设计与分析[M]. 北京:航空工业出版社, 2003:220-271. ZHENG X L. Handbook of civil aircraft structural durability and damage tolerance design:Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003:220-271(in Chinese).
[14] 黄啸, 刘建中, 马少俊, 等. 细节疲劳额定强度计算参量取值敏感性研究[J]. 航空学报, 2012, 33(5):863-870. HUANG X, LIU J Z, MA S J, et al. Sensitivity analysis of the parameters in detail fatigue rating equation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5):863-870(in Chinese).
[15] 樊俊铃. 基于Gerber模型的DFR法与结构细节效应[J]. 航空材料学报, 2016, 36(2):80-86. FAN J L. DFR method and structural detail effect based on gerber model[J]. Journal of Aeronautical Materials, 2016, 36(2):80-86(in Chinese).
[16] 刘存, 赵谋周. 加筋壁板面内剪切试验方法分析及试验研究[J]. 工程与试验, 2016, 56(2):8-12. LIU C, ZHAO M Z. Analysis and experimental research on test method for in-plane shear of stiffened panel[J]. Engineering & Test, 2016, 56(2):8-12(in Chinese).
[17] MOHD H O, MAHMOOD T, SARIFUDDIN S. Fatigue shear strength of slender wed plate girders[J]. Journal of Civil Engineering, 2000,12(1):9-19.
[18] MATTEIS G, BRANDO G, MAZZOLANI F. Experimental and numerical analysis of pure aluminium shear panels for seismic protection of structures:An overview[J].Heron, 2010,3a4:187-221.
[19] ALINIA M M, HOSSEINZADEH S A A, HABASHI H R. Numerical modelling for buckling analysis of cracked shear panels[J]. Thin-Walled Structures, 2007, 45(12):1058-1067.
[20] ALINIA M M, HOSSEINZADEH S A A, HABASHI H R. Influence of central cracks on buckling and post-buckling behaviour of shear panels[J]. Thin-Walled Structures, 2007, 45(4):422-431.