[1] MCCURDY D, ROCHE J. Structural sizing of a horizontal take-off launch vehicle with an air collection and enrichment system[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2004.
[2] EKLUND D.Quicksat:A two stage to orbit reusable launch vehicle utilizing air breathing propulsion for responsive space access[C]//Space 2004 Conference and Exhibit. Reston:AIAA, 2004.
[3] WALLACE J, BRADFORD J, CHARANIA A C, et al. Concept study of the ARES hybrid-OS launch system[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2006.
[4] Committee on Reusable Launch Vehicle Technology and Test Program, National Research Council. Reusable launch vehicle:Technology development and test program[M]. Washington, D.C.:The National Academies Press, 1995.
[5] WAY D, OLDS J, WAY D, et al. Sirius-A new launch vehicle option for Mega-LEO constellation deployment[C]//33rd Joint Propulsion Conference and Exhibit. Reston:AIAA, 1997.
[6] ANDREWS D, CROCKER A. Go horizontal:a reusable, evolvable, feasible space launch roadmap[C]//Space 2004 Conference and Exhibit. Reston:AIAA, 2004.
[7] DOUPE C, SPONABLE J, ZWEBER J,et al. Fully reusable access to space technology (FAST) methane rocket[R]. Edwards:Air Force Research Lab Edwards AFB CA Propulsion Directorate, 2007.
[8] MUSK E. Making life multiplanetary transcript 2017[C]//68th International Astronautical Congress, 2017.
[9] Federal Aviation Administration. The annual compendium of commercial space transportation[R]. Washington, D.C.:FAA Office of Commercial Space Transportation, 2018.
[10] SPIES J. RLV Hopper:Consolidated system concept[J]. Acta Astronautica, 2003, 53(4-10):709-717.
[11] KAUFFMANN J. Future European launch systems in FLPP and overview of second period[C]//57th International Astronautical Congress. Reston:AIAA, 2006
[12] TOMATIS C, BOUAZIZ L, FRANCK T, et al. RLV candidates for European future launchers preparatoryprogramme[J]. Acta Astronautica, 2009, 65(1-2):40-46.
[13] SIPPEL M, MANFLETTI C, BURKHARDT H. Long-term/strategic scenario for reusable booster stages[J]. Acta Astronautica, 2006, 58(4):209-221.
[14] KLEVANSKI J, SIPPEL M. Special aspects of flight dynamics of a reusable cryogenic booster stage[C]//Fifth European Symposium on Aerothermodynamics for Space Vehicles, 2004.
[15] PRAMPOLINI M, LOUAAS E, PREL Y, et al. Advanced space transportation systems, BARGOUZIN booster[J]. Acta Astronautica, 2008, 63(1-4):435-447.
[16] 黄盘兴, 何英姿, 杨鸣, 等. 类IXV飞行器初期再入制导与姿态控制方法研究[J]. 空间控制技术与应用, 2018, 44(3):22-27, 42. HUANG P X, HE Y Z, YANG M, et al. Reentry guidance and control method for class-IXV aircraft[J]. Aerospace Control and Application, 2018, 44(3):22-27, 42(in Chinese).
[17] MOOIJ E, CHU Q. Tightly-coupled IMU/GPS Re-entry navigation system[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[18] 杨勇, 王小军, 唐一华, 等. 重复使用运载器发展趋势及特点[J]. 导弹与航天运载技术, 2002(5):15-19. YANG Y, WANG X J, TANG Y H, et al. Development trends and characteristics of reusable launch vehicles[J]. Missiles and Space Vehicles, 2002(5):15-19(in Chinese).
[19] ISHIMOTO S, FUJII K, SHIMURA K. A design study of a next generation launch system[C]//26th International Symposium on Space Technology and Science, 2008
[20] 杨勇. 我国重复使用运载器发展思路探讨[J]. 导弹与航天运载技术, 2006(4):1-4. YANG Y. Study on roadmap of Chinese reusable launch vehicle[J]. Missiles and Space Vehicles, 2006(4):1-4(in Chinese).
[21] ZH.印度成功进行RLV-TD飞行试验[J]. 航天工业管理, 2016(6):46. ZH. Successful RLV-TD flight test in India[J]. Aerospace Industry Management, 2016(6):46(in Chinese).
[22] BRINDA V, ARORA R K, JANARDHANAE. Mission analysis of a reusable launch vehicle technology demonstrator (RLV-TD)[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[23] JEE G, SHARMA K K, KOTESWARA R K, et al. Evolution of attitude control law of an Indian re-entry launch vehicle[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2014, 6(3-4):148-157.
[24] HAIGNERÉ J P, GATHIER L, COUÉ P.Vehra SH suborbital manned vehicle[C]//57th International Astronautical Congress, 2006.
[25] Space Exploration Thechnologies Crop. SpaceX, Falcon user's guide (August 2020)[M]. Hawthorne:SpaceX, 2020.
[26] DUMONT E, ECKER T, CHAVAGNAC C, et al, CALLISTO reusable VTVL launcher first stage demonstrator[C]//Space Propulsion, 2019.
[27] GUEDRON S, ISHIMOTO S, DUMONT E. CALLISTO:A cooperation for an in-flight demonstration of reusability[C]//70th International Astronautical Congress, 2019.
[28] JEROME V, JEREMIE H, Technology acceleration process for the THEMIS low cost and reusable prototype[C]//8th European Conference for Aeronautics and Space Sciences, 2019.
[29] PATUREAU DE MIRAND A, BAHU J M, GOGDET O. Ariane Next, a vision for the next generation of Ariane Launchers[J]. Acta Astronautica, 2020, 170:735-749.
[30] SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5):652-674.
[31] HAGOPIAN J. 2nd generation reusable launch vehicle-concepts for flight operations[C]//SpaceOps 2002 Conference. Reston:AIAA, 2002.
[32] 蔡巧言, 张旭辉, 彭小波, 等. 可重复使用助推器系统综述与评估[M]. 北京:国防工业出版社, 2018. CAI Q Y, ZHANG X H, PENG X B, et al. Reusable booster system review and assessment[M]. Beijing:National Defense Industry Press, 2018.
[33] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3):1-9. LU Y, CAI Q Y, WANG F. Near space and reusable technology[J]. Missiles and Space Vehicles, 2018(3):1-9(in Chinese).
[34] 闻悦, 马婷婷, 郑平军, 等. 重复使用航天运输系统设计与评估[J]. 科学通报, 2020, 65(9):764-770. WEN Y, MA TT, ZHENG P J, et al. Design and assessment of reusable space transportation system[J]. Chinese Science Bulletin, 2020, 65(9):764-770(in Chinese).
[35] 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018, 36(10):84-92. LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science & Technology Review, 2018, 36(10):84-92(in Chinese).
[36] 姚德清, 魏毅寅, 杨志红, 等. 空天飞行器制导控制技术研究进展与展望[J]. 宇航学报, 2020, 41(7):850-859. YAO D Q, WEI Y Y, YANG Z H, et al. Progress and prospect of research on guidance and control technology of aerospace vehicle[J]. Journal of Astronautics, 2020, 41(7):850-859(in Chinese).
[37] 徐延万. 控制系统-(上)[M]. 北京:中国宇航出版社, 1989. XU Y W. Control system-(Volume I)[M]. Beijing:China Aerospace Press, 1989.
[38] CHERN H S. A open loop guidance architecture for navigationally robust on-orbit docking[M]. Washington, D.C.:NASA, 1995.
[39] DEATON A W,KELLEY P B. Structural load reduction of the space shuttle booster/orbiter configuration using a load relief guidance technique:NASA-TM-X-64738[R]. Washington, D.C.:NASA, 1973.
[40] HANSON J, SHRADER M, CRUZEN C. Ascent guidance comparisons[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1994.
[41] AHMAD N, ANZALONE E J, SCOTT C A, et al. Evolution and impact of Saturn V on space launch system from a guidance, navigation, and mission analysis perspective[C]//70th International Astronautical Congress, 2019.
[42] SMITH I E. General formulation of the iterative guidance mode:NASA TMX-53414[R]. Washington, D.C.:NASA, 1966.
[43] HORN H J, The iterative guidance law for saturn[C]//12th East Coast Conference on Aerospace and Navigational Electronics,1965.
[44] 吕新广, 宋征宇. 长征运载火箭制导方法[J]. 宇航学报, 2017, 38(9):895-902. LV X G, SONG Z Y. Guidance methods oflong-March launch vehicles[J]. Journal of Astronautics, 2017, 38(9):895-902(in Chinese).
[45] 宋征宇, 潘豪, 王聪, 等. 长征运载火箭飞行控制技术的发展[J]. 宇航学报, 2020, 41(7):868-879. SONG Z Y, PAN H, WANG C, et al. Development of flight control technology oflong March launch vehicles[J]. Journal of Astronautics, 2020, 41(7):868-879(in Chinese).
[46] 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术, 2018, 38(2):24-31. SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints[J]. Chinese Space Science and Technology, 2018, 38(2):24-31(in Chinese).
[47] GREEN W G, TUCKER W B. Comparison of the Atlas/Centaur (Surveyor) and IGM guidance concepts:NASA TM X-53674[R]. Washington,D.C.:NASA, 1964.
[48] SCHLEICH W. The space shuttle ascent guidance and control[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[49] MCHENRY R L, LONG A D, COCKRELL B F, et al. Space Shuttle ascent guidance, navigation, and control[J]. Journal of the Astronautical Sciences, 1979, 27(1):1-38.
[50] VON DER PORTEN P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications & enhancements for space launch system block-1 and block-1b vehicles[C]//41st Annual AAS Rocky Mountain Section Guidance and Control Conference,2018.
[51] BROWN K R, HARROLD E F, JOHNSON G W. Rapid optimization of multiple-burn rocket flights[M]//Proceedings of the XXth International Astronautical Congress, 1972:649-671.
[52] VON DER PORTEN P, AHMAD N, HAWKINS M. Closed loop guidance trade study for space launch system block-1b vehicle[C]//AAS/AIAA Astrodynamics Specialist Conference, 2018.
[53] KAMPOS B. Guidance, flight mechanics and trajectory optimization. Volume 9-General Perturbations Theory:NASA CR-1008[R]. Washington,D.C.:NASA, 1968.
[54] SPEYER J L, JARMARK B S A. Robust perturbation guidance for the advanced launch system[C]//1989 American Control Conference.Piscataway:IEEE Press, 1989:2489-2494.
[55] 崔鑫水. CZ-2E运载火箭制导技术[J]. 导弹与航天运载技术, 1993(2):6, 21-27. CUI X S. Guidance technique of CZ-2E launch vehicle[J]. Missiles and Space Vehicles, 1993(2):6, 21-27(in Chinese).
[56] 黄文博, 张银辉, 师帅, 等. 运载火箭摄动制导导引系数实时计算方法[J]. 国防科技大学学报, 2013, 35(1):19-23. HUANG W B, ZHANG Y H, SHI S, et al. Research on the real-time calculation of perturbation guidance coefficients for the launch vehicle[J]. Journal of National University of Defense Technology, 2013, 35(1):19-23(in Chinese).
[57] 唐明亮, 邱伟, 王颖, 等. 基于摄动制导的运载火箭一子级落点控制[J]. 导弹与航天运载技术, 2017(4):68-71. TANG M L, QIU W, WANG Y, et al. Impact point control of first sub-stage of launch vehicle based on perturbation guidance[J]. Missiles and Space Vehicles, 2017(4):68-71(in Chinese).
[58] 田再克, 杨锁昌, 冯德龙, 等. 基于摄动理论的落点预测算法研究[J]. 现代防御技术, 2014, 42(3):86-90. TIAN Z K, YANG S C, FENG D L, et al. Impact point prediction algorithm based on perturbation theory[J]. Modern Defence Technology, 2014, 42(3):86-90(in Chinese).
[59] SUN H S. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle[D]. Ames Iowa:Iowa State University, 2005.
[60] XU H, CHEN W C. An energy management ascent guidance algorithm for solid rocket-powered launch vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011.
[61] BOURGEOIS E, BOKANOWSKI O, ZIDANI H, et al. New improvements in the optimization of the launcher ascent trajectory through the HJB approach[C]//7th European Conference for Aeronautics and Space Sciences, 2017.
[62] BLESS R R. Time-domain finite elements in optimal control with application to launch-vehicle guidance[D]. Atlanta:Georgia Institute of Technology, 1991.
[63] VACHON A, DESBIENS A, GAGNON E, et al. Launch ascent guidance by discrete multi-model predictive control[J]. Acta Astronautica, 2014, 95:101-110.
[64] CALISE A J, LEUNG M S K. Optimal guidance law development for an advanced launch system:NASA CR-4667[R]. Washington,D.C.:NASA, 1995.
[65] 张志国, 余梦伦, 耿光有, 等. 应用伪谱法的运载火箭在线制导方法研究[J]. 宇航学报, 2017, 38(3):262-269. ZHANG Z G, YU M L, GENG G Y, et al. Research on application of pseudo-spectral method in online guidance method for a launch vehicle[J]. Journal of Astronautics, 2017, 38(3):262-269(in Chinese).
[66] SONG Z Y, ZHAO D, LV X, Terminal attitude-constrained guidance and control for lunar soft landing[J]. Advances in the Astronautical Sciences, 2015, 153:137-147.
[67] ROTHMUND C. Fluorine rocket engine demonstrators[C]//57th International Astronautical Congress. Reston:AIAA, 2006.
[68] 陈书钊, 楚龙飞, 杨秀梅, 等. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3):322286. CHEN S Z, CHU L F, YANG X M, et al. Application of state prediction neural network control algorithm in small reusable rocket[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322286(in Chinese).
[69] KLUMPP A R. Apollo lunar descent guidance[J].Automatica, 1974, 10(2):133-146.
[70] PRAKASH R, BURKHART P D, CHEN A, et al. Mars science laboratory entry, descent, and landing system overview[C]//2008 IEEE Aerospace Conference. Piscataway:IEEE, 2008:1-18.
[71] 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学:技术科学, 2014, 44(4):377-384. ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang'E-3 powered descent[J]. Scientia Sinica (Technologica), 2014, 44(4):377-384(in Chinese).
[72] EBRAHIMI B, BAHRAMI M, ROSHANIAN J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11):556-562.
[73] GUO Y N, HAWKINS M, WIE B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):799-809.
[74] ZHOU L Y, XIA Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase[J]. Advances in Space Research, 2014, 54(11):2446-2455.
[75] ZHANG Y, GUO Y N, MA G F, et al. Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars[J]. Advances in Space Research, 2017, 59(6):1514-1525.
[76] PASCUCCI C A, BENNANI S, BEMPORAD A. Model predictive control for powered descent guidance and control[C]//2015 European Control Conference (ECC). Piscataway:IEEE Press, 2015:1388-1393.
[77] TOPCU U, CASOLIVA J, MEASE K D. Minimum-fuel powered descent for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets, 2007, 44(2):324-331.
[78] ZHANG B J, LIU Z C, LIU G. High-precision adaptive predictive entry guidance for vertical rocket landing[J]. Journal of Spacecraft and Rockets, 2019, 56(6):1735-1741.
[79] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[80] ACIKMEŞE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2104-2113.
[81] SAGLIANO M.Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):320-334.
[82] SZMUK M, REYNOLDS T, ACIKMESE B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[83] BLACKMORE L. Autonomous precision landing of space rockets[C]//Frontiers of Engineering:Reports on Leading-Edge Engineering from the 2016 Symposium, 2016, 46:15-20.
[84] WANG C, SONG Z Y. Convex model predictive control for rocket vertical landing[C]//37th Chinese Control Conference (CCC), 2018.
[85] WANG J B, CUI N G. Apseudospectral-convex optimization algorithm for rocket landing guidance[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[86] MA L, WANG K X, XU Z H, et al. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain[J]. Acta Astronautica, 2018, 146:289-299.
[87] SEELBINDER D. On-board trajectory computation for Mars atmospheric entry based on parametric sensitivity analysis of optimal control problems[D]. Bremen:Universität Bremen, 2017.
[88] MA L, WANG K X, XU Z H, et al. Multi-point powered descent guidance based on optimal sensitivity[J]. Aerospace Science and Technology, 2019, 86:465-477.
[89] WANG C, SONG Z Y. Rapid trajectory optimization for lunar soft landing with hazard avoidance[J]. Advances in the Astronautical Sciences, 2018, 161:885-900.
[90] SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-18.
[91] SAGLIANO M, DUMKE M, THEIL S. Simulations and flight tests of a new nonlinear controller for the EAGLE lander[J]. Journal of Spacecraft and Rockets, 2018, 56(1):259-272.
[92] DUMKE M, SAGLIANO M, SARANRITTICHAI P, et al. EAGLE-Environment for autonomous GNC landing experiments[C]//10th International ESA Conference on Guidance, Navigation and Control System, 2017.
[93] YANG Y, HU D F, YU M L. Roadmap of long-March reusable launch vehicle[C]//57th International Astronautical Congress. Reston:AIAA, 2006.
[94] SATO S, TSUKAMOTO T, YAMAMOTO T, et al., The study of navigation, guidance, and control system of reusable vehicle experiment (RV-X)[C]//28th Workshop on JAXA Astrodynamics and Flight Mechanics, 2018.
[95] 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术, 2019, 3(6):1-12. SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology, 2019, 3(6):1-12(in Chinese).
[96] SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks:Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5):1122-1135.
[97] FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171:156-171.
[98] YOU S X, WAN C H, DAI R, et al. Learning-based optimal control for planetary entry, powered descent and landing guidance[C]//AIAA SciTech 2020 Forum. Reston:AIAA, 2020.
[99] 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):27-42. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2):27-42(in Chinese).
[100] LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics,2017, 41(4):813-826.
[101] WEI C Z, JU X Z, WU R, et al. Geometry and time updaters-based arbitrary-yaw iterative explicit guidance for fixed-thrust boost back of vertical take-off/vertical landing reusable launch vehicles[J]. Aerospace Science and Technology, 2019, 95:105433.
[102] 王小虎, 陈翰馥, 刘锋. 机动再入飞行器主动段再入点约束闭路制导研究[J]. 宇航学报, 2002, 23(4):37-41, 51. WANG X H, CHEN H F, LIU F. Study of the closed-loop guidance law for boost phase with reentry constraints of maneuvering reentry vehicles[J]. Journal of Astronautics, 2002,23(4):37-41, 51(in Chinese).
[103] 李连仲. 远程弹道导弹闭路制导方法研究[J]. 系统工程与电子技术, 1980, 2(4):1-17. LI L Z. Research on closed-loop guidance method of long-range ballistic missile[J]. Systems Engineering and Electronics, 1980, 2(4):1-17(in Chinese).
[104] 张卫东, 刘玉玺, 刘汉兵, 等. 运载火箭姿态控制技术的发展趋势和展望[J]. 航天控制, 2017, 35(3):85-89. ZHANG W D, LIU Y X, LIU H B, et al. Development trend and prospect of attitude control technologies of launch vehicle[J]. Aerospace Control, 2017, 35(3):85-89(in Chinese).
[105] 张新. 重复使用运载器多模型自适应控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019:10-13. ZHANG X. Research on multi-mode adaptive control method for reusable launch vehicle[D]. Harbin:Harbin Institute of Technology, 2019:10-13(in Chinese).
[106] TIAN B L, FAN W R, SU R, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1639-1650.
[107] HALL C, GALLAHER M, HENDRIX N. X-33 attitude control system design for ascent, transition, and entry flight regimes[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[108] SIMPLICIO P, MARCOS A, BENNANI S. New control functionalities for launcher load relief in ascent and descent Flight[C]//European Conference for Aeronautics & Space Sciences, 2019.
[109] ORR J S, WALL J H, VANZWIETEN T S, et al. Space launch system ascent flight control design[J]. Advances in the Astronautical Sciences, 2014, 151:141-154.
[110] WALL J H, MILLER C J, HANSON C E, et al. In-flight suppression of a destabilized F/A-18 structural mode using the space launch system adaptive augmenting control system[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2015.
[111] DENNEHY C J, VANZWIETEN T S, HANSON C E, et al. Flight testing of the space launch system (SLS) adaptive augmenting control (AAC) algorithm on an F/A-18:NASA/TM-2014-218528[R]. Washington,D.C.:NASA, 2014.
[112] PEI J, ROTHHAAR P. Demonstration of the space launch system augmenting adaptive control algorithm on pole-cart platform[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[113] MAO Q, DOU L Q, TIAN B L, et al. Reentry attitude control for a reusable launch vehicle withaeroservoelastic model using type-2 adaptive fuzzy sliding mode control[J]. International Journal of Robust and Nonlinear Control, 2018, 28(18):5858-5875.
[114] 王勇, 李延军, 张亮, 等. 基于最优控制的航天器断续姿控系统设计方法[J]. 导弹与航天运载技术, 2017(4):63-67. WANG Y, LI Y J, ZHANG L, et al. An optimal control method for discontinuous attitude control system of spacecraft[J]. Missiles and Space Vehicles, 2017(4):63-67(in Chinese).
[115] XING G Q, PARVEZ S A. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):624-626.
[116] SHTESSEL Y, HALL C. Sliding mode control of the X-33 with an engine failure[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2000.
[117] SHTESSEL Y, HALL C, BAEV S, et al. Flexible modes control using sliding mode observers:Application to Ares I[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010.
[118] PEI J, PUETZ A, DUARTE C, et al. Suppression of nonlinear rotary slosh dynamics using the SLS adaptive augmenting control system demonstration on a quadcopter testbed[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[119] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
[120] WANG F, HUA C C, ZONG Q. Novel smooth sliding mode attitude control design for constrained reentry vehicle based on disturbance observer[J]. International Journal of Systems Science, 2019, 50(1):75-90.
[121] WANG F, ZONG Q, TIAN B L. Adaptive backstepping finite time attitude control of reentry RLV with input constraint[J]. Mathematical Problems in Engineering, 2014, 2014:1-19.
[122] WANG F, HUA C C, ZONG Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327.
[123] MAO Q, DOU L Q, ZONG Q, et al. Attitude control design for reusable launch vehicles using adaptive fuzzy control with compensation controller[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(3):823-836.
[124] 刘超逸, 唐硕, 许志. 可重复使用运载器复合控制研究[J]. 计算机仿真, 2013, 30(10):76-80. LIU C Y, TANG S, XU Z. Research on hybrid control for reusable launch vehicle[J]. Computer Simulation, 2013, 30(10):76-80(in Chinese).
[125] 陆艳辉, 张曙光. 离散RCS的PWPF调制方式改进及混合控制逻辑设计[J]. 航空学报, 2012, 33(9):1561-1570. LU Y H, ZHANG S G. An improvement on PWPF modulation of discrete RCS and design of the blended control logic[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1561-1570(in Chinese).
[126] HUANG Y, XU K K, HAN J Q, et al. Flight control design using extended state observer and non-smooth feedback[C]//Proceedings of the 40th IEEE Conference on Decision and Control (Cat.No.01CH37228). Piscataway:IEEE Press, 2001:223-228.
[127] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[128] HANSON J, COUGHLIN D, DUKEMAN G, et al. Ascent, transition, entry, and abort guidance algorithm design for the X-33 vehicle[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[129] LU P, SUN H S, TSAI B. Closed-loopendoatmospheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2):283-294.
[130] DUKEMAN G, CALISE A. Enhancements to an atmospheric ascent guidance algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[131] LU P, ZHANG L J, SUN H S. Ascent guidance for responsive launch:A fixed-point approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[132] 孙春贞, 黄一敏, 郭锁凤. 可重复使用跨大气层飞行器自动着陆纵向制导与控制系统设计[C]//中国航空学会飞行器控制与操纵第十一次学术交流会, 2005:62-68. SUN C Z, HUANG Y M, GUO S F. Research onautolanding technology and control system design for reusable launch vehicle[C]//The Flight Control and Manipulation's Eleventh Academic Conference of the Chinese Association of Aeronautics, 2005:62-68(in Chinese).
[133] MEASE K, KREMER J P. Shuttle entry guidance revisited[C]//Astrodynamics Conference. Reston:AIAA, 1992.
[134] HARPOLD J C, GAVERT D E. Space Shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[135] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149.
[136] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[137] SHEN Z J. On-board three-dimensional constrained entry flight trajectory generation[D]. Ames:Iowa State University, 2002.
[138] LU P. Nonlinear trajectory tracking guidance with application to a launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1):99-106.
[139] MEASE K, TEUFEL P, SCHOENENBERGER H, et al. Re-entry trajectory planning for a reusable launch vehicle[C]//24th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1999.
[140] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[141] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[142] MEASE K D, KREMER J P. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1350-1356.
[143] CHOWDHRY R, ZIMMERMANN C, YOUSSEF H, et al. Predictor-corrector entry guidance for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001.
[144] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[145] LU P. Asymptotic analysis of quasi-equilibrium glide in lifting entry flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):662-670.
[146] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[147] LAVAGNA M, PARIGINI C, ARMELLIN R.PSO algorithm for planetary atmosphere entry vehicles multidisciplinary guidance design[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2006.
[148] 陈上上, 何英姿, 刘贺龙. 基于粒子群优化的再入飞行器在线轨迹规划[J]. 上海航天, 2015, 32(6):1-7, 52. CHEN S S, HE Y Z, LIU H L. Onboard trajectory planning for entry vehicle based on particle swarm optimization[J]. Aerospace Shanghai, 2015, 32(6):1-7, 52(in Chinese).
[149] 荣思远, 周宏宇, 白瑜亮, 等. 可重复使用运载器滑翔段轨迹快速优化方法[J]. 战术导弹技术, 2020(2):66-73. RONG S Y, ZHOU H Y, BAI Y L, et al. Fast gliding trajectory optimization for reusable launch vehicle[J]. Tactical Missile Technology, 2020(2):66-73(in Chinese).
[150] MOORE T E. Spaceshuttle entry terminal area energy management[M]. Washington,D.C.:National Aeronautics and Space Administration, 1991.
[151] HILL A, ANDERSON D, COUGHLIN D, et al. X-33 trajectory optimization and design[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[152] TSIKALAS G. Space Shuttle autoland design[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[153] BOLLINO K, OPPENHEIMER M, DOMAN D. Optimal guidance command generation and tracking for reusable launch vehicle reentry[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[154] BARTON G H. New methodologies for assessing the rrobustness of the X-34 auto landing trajectories[C]//24th Annual AAS Guidance and Control Conference, 2001.
[155] GIRERD A, BARTON G. Next generation entry guidance-Onboard trajectory generation for unpowered drop tests[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[156] SCHIERMAN J, HULL J, WARD D. On-line trajectory command reshaping for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[157] VERMA A, OPPENHEIMER M, DOMAN D. On-line adaptive estimation and trajectory reshaping[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[158] BARTON G H, GRUBLER A C,DYCKMAN T R, et al. New methodologies for onboard generation of TAEM trajectories for autonomous RLVs[C]//2002 Core Technologies for Space Systems Conference, 2002.
[159] BARTON G, TRAGESSER S.Autolanding trajectory design for the X-34[C]//24th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1999.
[160] SCHIERMAN J, GANDHI N, HULL J, et al. Flight test results of an adaptive guidance system for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2004.
[161] KAFER G. Space Shuttle Entry/Landing flight control design description[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[162] KIRSTEN P. Development of a fuel-saving flight control system for the Space Shuttle based on flight experience[C]//Aircraft Design Systems and Operations Meeting. Reston:AIAA, 1985.
[163] JOHNSON E, CALISE A, EL-SHIRBINY H, et al. Feedback linearization with Neural Network augmentation applied to X-33 attitude control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[164] Lee & Associates, LLC. Support to X-33/Resusable launch vehicle technology program:20010000337[R]. Washington, D.C.:NASA, 2000.
[165] LI Y X. Deep reinforcement learning:An overview[DB/OL]. arXiv:1701.07274,2017.
[166] SHTESSEL Y, TOURNES C, KRUPP D, et al. Reusable launch vehicle control in sliding modes[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1997.
[167] SHTESSEL Y, MCDUFFIE J, JACKSON M, et al. Sliding mode control of the X-33 vehicle in launch and re-entry modes[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[168] SHTESSEL Y, HALL C, JACKSON M. Reusable launch vehicle control in multiple-time-scale sliding modes[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6):1013-1020.
[169] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
[170] JOHNSON E N. Limited authority adaptive flight control[D]. Atlanta:Georgia Institute of Technology, 2000.
[171] JOHNSON E, CALISE A, EL-SHIRBINY H, et al. Feedback linearization with Neural Network augmentation applied to X-33 attitude control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[172] JOHNSON E N, CALISE A J. Limited authority adaptive flight control for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6):906-913.
[173] ZHU J, BANKER B, HALL C. X-33 ascent flight control design by trajectory linearization-A singular perturbation approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[174] ZHU J, HUIZENGA A. A type two linearization controller for a resuable launch vehicle-A singular perturbation approach[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2004.