Review

Turbulent flow data assimilation and its applications

  • HE Chuangxin ,
  • DENG Zhiwen ,
  • LIU Yingzheng
Expand
  • 1. Key Laboratory of Ministry of Education for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Gas Turbine Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-09-02

  Revised date: 2020-10-08

  Online published: 2021-04-30

Supported by

National Natural Science Foundation of China (12002208,11725209)

Abstract

Data Assimilation (DA) has been introduced into the turbulence dynamics community in recent years. Coupling experimental measurements and numerical simulation, it improves the accuracy and scope of measurements and reduces the uncertainty of simulations. Experimental observations, predictive models and assimilation algorithms are three essential factors in DA. Observations in turbulent flows usually involve hot wire anemometer, Particle Image Velocimetry (PIV), pressure sensors and other measurement techniques. The predictive model refers specifically to flow governing equations and turbulence closures. The assimilation algorithm ranges from Bayesian inference, Ensemble Karman Filter (EnKF), to adjoint formulations. DA for steady-state flows has a combination of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, aiming at model constant recalibration, equation form-error correction and Reynolds stress term reproduction, whilst the unsteady DA has two main categories, i.e., four-dimensional variational DA (4DVar) and sequential DA. Employing the forward and backward integration, 4DVar requires large storage space and high computational cost. Free from backward integration, sequential DA can intermittently couple with the observational data at selected instances in a forward direction. Additionally, fast development of machine learning and artificial intelligence pushes turbulence research towards the direction of intelligence. While the pure data-driven machine learning lacks physical constraints, the physical-informed machine learning is in consistent with DA in the essence of physics.

Cite this article

HE Chuangxin , DENG Zhiwen , LIU Yingzheng . Turbulent flow data assimilation and its applications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 524704 -524704 . DOI: 10.7527/S1000-6893.2020.24704

References

[1] ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6):933-947.
[2] RAFFEL M, WILLERT C E, WERELEY S T, et al. Particle image velocimetry:A practical guide[M]. 2nd ed. Berlin:Springer-Verlag, 2007.
[3] FREYMUTH P. Frequency response and electronic testing for constant-temperature hot-wire anemometers[J]. Journal of Physics E:Scientific Instruments, 1977, 10(7):705.
[4] PIOMELLI U. Large-eddy simulation:Achievements and challenges[J]. Progress in Aerospace Sciences, 1999, 35(4):335-362.
[5] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
[6] HE C, LIU Y, YAVUZKURT S. A dynamic delayed detached-eddy simulation model for turbulent flows[J]. Computers & Fluids, 2017, 146:174-189.
[7] EVENSEN G. Data assimilation[M]. Berlin:Springer-Verlag, 2009.
[8] NAVON I M. Data assimilation for numerical weather prediction:A review[M]//Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Berlin:Springer-Verlag, 2009:21-65.
[9] EDWARDS C A, MOORE A M, HOTEIT I, et al. Regional ocean data assimilation[J]. Annual Review of Marine Science, 2015, 7(1):21-42.
[10] 王文, 寇小华. 水文数据同化方法及遥感数据在水文数据同化中的应用进展[J]. 河海大学学报(自然科学版),2009,37(5):556-562. WANG W, KOU X H. Methods for hydrological data assimilation and advances of assimilating remotely sensed data into rainfall-runoff models[J]. Journal of Hohai University(Natural Sciences), 2009,37(5):556-562(in Chinese).
[11] 秦耀军, 周晓勇, 杨亚宾, 等. 基于数据同化技术的地质参数反演分析研究[J]. 水科学与工程技术,2017(6):78-82. QIN Y J, ZHOU X Y, YANG Y B, et al. Back analysis of geological parameters based on data assimilation[J]. Water Sciences and Engineering Technology,2017(6):78-82(in Chinese).
[12] YAMAGUCHI J, YOSHIDA K, KANEDA Y. Suppression of error growth in turbulence by data assimilation in isotropic turbulence[C]//American Physical Society, Division of Fluid Dynamics 56th Annual Meeting, 2003.
[13] KATO H, OBAYASHI S. Statistical approach for determining parameters of a turbulence model[C]//15th International Conference on Information Fusion, 2012.
[14] TR'EMOLET Y. Accounting for an imperfect model in 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132:2483-2504.
[15] LAKSHMIVARAHAN S, STENSRUD D. Ensemble Kalman filter[J]. IEEE Control Systems, 2009, 29(3):34-46.
[16] HE C, LIU Y, GAN L. A data assimilation model for turbulent flows using continuous adjoint formulation[J]. Physics of Fluids, 2018, 30(10):105108.
[17] WANG J X, WU J L, XIAO H. Physics-informed machine learning for predictive turbulence modeling:Using data to improve RANS modeled Reynolds stresses[J]. Physical Review Fluids, 2016, 2(3):1-22.
[18] SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227.
[19] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305:758-774.
[20] 马艺敏, 陈铭, 王强, 等. 应用PIV测量缩比共轴双旋翼流场特性的研究[J]. 南京航空航天大学学报, 2015, 47(2):220-227. MA Y M, CHEN M, WANG Q, et al. PIV measurements of model-scale coaxial rotors flow features[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):220-227(in Chinese).
[21] 张俊, 陈柳君, 胥頔, 等. 航空涡轮发动机燃烧室内流场的PIV测量[J]. 航空动力学报,2017, 32(6):1289-1295. ZHANG J, CHEN L J, XU D, et al. PIV measurement for inner flowfield in aero turbine engine combustor[J]. Journal of Aerospace Power, 2017, 32(6):1289-1295(in Chinese).
[22] GULYÁS A, BODOR Á, REGERT T, et al. PIV measurement of the flow past a generic car body with wheels at LES applicable Reynolds number[J]. International Journal of Heat & Fluid Flow, 2013, 43:220-232.
[23] WIENEKE B. Stereo-PIV using self-calibration on particle images[J]. Experiments in Fluids, 2005, 39(2):267-280.
[24] WORTH N A, NICKELS T B. Acceleration of Tomo-PIV by estimating the initial volume intensity distribution[J]. Experiments in Fluids, 2008, 45(5):847-856.
[25] DE SILVA C M, BAIDYA R, MARUSIC I. Enhancing Tomo-PIV reconstruction quality by reducing ghost particles[J]. Measurement Science & Technology, 2013, 24(2):024010.
[26] HE C, LIU Y, PENG D, et al. Measurement of flow structures and heat transfer behind a wall-proximity square rib using TSP, PIV and split-fiber film[J]. Experiments in Fluids, 2016, 57(11):165.
[27] 韩振兴. 热敏液晶测温技术及其在平板气膜冷却实验中的应用[D]. 北京:中国科学院工程热物理研究所, 2005. HAN Z X. Liquid crystal thermography and its application in film cooling on flat plate[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2005(in Chinese).
[28] HE C, LIU Y. Proper orthogonal decomposition of time-resolved LIF visualization:Scalar mixing in a round jet[J]. Journal of Visualization, 2017, 20:789-815.
[29] HSU P S, HALLS B R, ROY S, et al. Three-dimensional temperature measurements in turbulent reacting flows[C]//Laser Applications to Chemical, Security & Environmental Analysis, 2018.
[30] PENG D, JENSEN C D, JULIANO T J, et al. Temperature-compensated fast pressure-sensitive paint[J]. AIAA Journal, 2013, 51(10):2420-2431.
[31] VAN OUDHEUSDEN B. PIV-based pressure measurement[J]. Measurement Science and Technology, 2013, 24(3):032001.
[32] HE C, LIU Y, GAN L. Instantaneous pressure determination from unsteady velocity fields using adjoint-based sequential data assimilation[J]. Physics of Fluids, 2020, 32(3):035101.
[33] 付在国, 赵飞宇, 张莉, 等. PIV与PLIF同步测量方法在湍流扩散研究中的应用[J]. 上海电力大学学报, 2019, 35(1):90-95. FU Z G, ZHAO F Y, ZHANG L, et al. Application of simultaneous PIV and PLIF measurements in turbulent diffusion study[J]. Journal of Shanghai University of Electric Power, 2019, 35(1):90-95(in Chinese).
[34] SARATHI P, GURKA R, KOPP G A, et al. A calibration scheme for quantitative concentration measurements using simultaneous PIV and PLIF[J]. Experiments in Fluids, 2012, 52(1):247-259.
[35] PENG D, LIU Y. A grid-pattern PSP/TSP system for simultaneous pressure and temperature measurements[J]. Sensors & Actuators B Chemical, 2016, 222:141-150.
[36] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2018, 51:357-377.
[37] XIAO H, CINNELLA P. Quantification of model unertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31.
[38] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京:清华大学出版社, 2008. ZHANG Z S, CUI G X, XU C X. Theory and application of turbulence large eddy simulation[M]. Beijing:Tsinghua University Press, 2008(in Chinese).
[39] ASHTON N, REVELL Z, PROSSER R, et al. Development of an alternative delayed detached-eddy simulation formulation based on elliptic relaxation[J]. AIAA Journal, 2013, 51(2):513-519.
[40] XIAO Z, LIU J, ZUO K, et al. Numerical investigations of massively separated flows past rudimentary landing gear using SST-DDES:AIAA-2012-0385[R]. Reston:AIAA, 2012.
[41] ISHIHARA T, QI Y. Numerical study of turbulent flow fields over steep terrain by using modified delayed detached-eddy simulations[J]. Boundary-Layer Meteorology, 2019, 170(1):45-68.
[42] SILVA C M D, PHILIP J, MARUSIC I. Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics[J]. Experiments in Fluids, 2013, 54(7):1-17.
[43] LI Z, ZHANG H, BAILEY S C C, et al. A data-driven adaptive Reynolds-averaged Navier-Stokes k-ω model for turbulent flow[J]. Journal of Computational Physics, 2017, 345:111-131.
[44] WU J L, WANG J X, XIAO H. A Bayesian calibration-prediction method for reducing model-form uncertainties with application in RANS simulations[J]. Flow, Turbulence and Combustion, 2016, 97(3):761-786.
[45] 邓志文, 何创新, 付豪, 等. 基于卡尔曼滤波数据同化和PIV测量的射流场重构[C]//第十届全国流体力学学术会议论文摘要集, 2018. DENG Z W, HE C X, FU H, et al. Reconstruction of jet flow based on EnKF data assimilation and PIV measurements[C]//Abstracts of the 10th National Conference on Fluid Mechanics, 2018(in Chinese).
[46] ZHANG X, GOMEZ T, COUTIER-DELGOSHA O. Bayesian optimisation of RANS simulation with ensemble-based variational method in convergent-divergent channel[J]. Journal of Turbulence, 2019, 20(5):1-26.
[47] DENG Z, HE C, WEN X, et al. Recovering turbulent flow field from local quantity measurement:Turbulence modeling using ensemble-Kalman-filter-based data assimilation[J]. Journal of Visualization 2018, 21(6):1043-1063.
[48] MARGHERI L. Quantification of epistemic uncertainties and parameter calibration in RANS turbulence models[D]. Pisa:University of Pisa, 2012.
[49] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11):110822.
[50] CHEUNG S H, OLIVER T, PRUDENCIO E E, et al. Bayesian uncertainty analysis with applications to turbulence modeling[J]. Reliability Engineering & System Safety, 2011, 96(9):1137-1149.
[51] OLIVER T A, MOSER R D. Bayesian uncertainty quantification applied to RANS turbulence models[J]. Journal of Physics Conference, 2011, 318(4):042032.
[52] SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110.
[53] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[54] SINGH A P, SHIVAJI M, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227.
[55] PAPOUTSIS-KIACHAGIAS E M, GIANNAKOGLOU K C. Continuous adjoint methods for turbulent flows, applied to shape and topology optimization:Industrial applications[J]. Archives of Computational Methods in Engineering, 2016, 23(2):255-299.
[56] FOURES D P G, DOVETTA N, SIPP D, et al. A data-assimilation method for Reynolds-averaged Navier-Stokes-driven mean flow reconstruction[J]. Journal of Fluid Mechanics, 2014, 759:404-431.
[57] SYMON S, SIPP D, SCHMID P J, et al. Mean and unsteady flow reconstruction using data-assimilation and resolvent analysis[J]. AIAA Journal, 2020, 58(2):575-588.
[58] SYMON S, DOVETTA N, MCKEON B J, et al. Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil[J]. Experiments in Fluids, 2017, 58(5):61.
[59] CHANDRAMOULI P, MEMIN E, HEITZ D. 4D large scale variational data assimilation of a turbulent flow with a dynamics error model[J]. Journal of Computational Physics, 2020, 412:109446.
[60] 刘蕴. 基于变分数据同化的核事故源项反演模型研究[D]. 北京:清华大学, 2017. LIU Y. Research on source inversion for nuclear accidents based on variational data assimilation[D]. Beijing:Tsinghua University, 2017.
[61] 谢衍新. 基于卫星观测的临近空间大气变分数据同化研究[D]. 北京:中国科学院国家空间科学中心, 2017. XIE Y X. Researches on near space atmosphere variational data assimilation technology based on satellite data[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2017.
[62] 赵海贝,王斌,戴永久. 基于历史样本投影的四维变分陆面数据同化方法及其初步应用[J]. 气候与环境研究, 2009, 14(4):383-389. ZHAO H B, WANG B, DAI Y J. Historical-sample-projection four-dimensional variational land surface data assimilation and its preliminary application[J].Climatic and Environmental Research, 2009, 14(4):383-389(in Chinese).
[63] 杨向阳, 舒红, 吴凯, 等. 遥感数据同化中亮温数据质量控制分析[J]. 城市勘测, 2018(5):54-58,66. YANG X Y, SHU H, WU K, et al. Data quality control of brightness temperature in remote sensing data assimilation[J]. Urban Geotechnical Investigation & Surveying, 2018(5):54-58,66(in Chinese).
[64] MONS V, CHASSAING J C, GOMEZ T, et al. Reconstruction of unsteady viscous flows using data assimilation schemes[J]. Journal of Computational Physics, 2016, 316:255-280.
[65] GRONSKIS A, HEITZ D, MÉMIN E. Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[J]. Journal of Computational Physics, 2013, 242:480-497.
[66] LEMKE M, SESTERHENN J R. Adjoint-based pressure determination from PIV data in compressible flows-Validation and assessment based on synthetic data[J]. European Journal of Mechanics-B/Fluids, 2016, 58:29-38.
[67] BAUWERAERTS P, MEYERS J. Towards an adjoint based 4D-Var state estimation for turbulent flow[J]. Journal of Physics Conference Series, 2018, 1037(7):072055.
[68] MELDI M, POUX A. A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows[J]. Journal of Computational Physics, 2017, 347:207-234.
[69] KATO H, YOSHIZAWA A, UENO G, et al. A data assimilation methodology for reconstructing turbulent flows around aircraft[J]. Journal of Computational Physics, 2015, 283:559-581.
[70] KATO H, OBAYASHI S. Approach for uncertainty of turbulence modeling based on data assimilation technique[J]. Computers & Fluids, 2013, 85:2-7.
[71] HACK M J P, ZAKI T A. Data-enabled prediction of streak breakdown in pressure-gradient boundary layers[J]. Journal of Fluid Mechanics, 2016, 801:43-64.
[72] MOGHADDAM A A, SADAGHIYANI A. A deep learning framework for turbulence modeling using data assimilation and feature extraction[DB/OL]. arXiv preprint:1802.06106, 2018.
[73] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103.
[74] LEE S, YOU D. Prediction of laminar vortex shedding over a cylinder using deep learning[DB/OL]. arXiv preprint:1712.07854, 2017.
[75] DENG Z, CHEN Y, LIU Y, et al. Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework[J]. Physics of Fluids, 2019, 31(7):075108.
[76] SRINIVASAN P A, GUASTONI L, AZIZPOUR H, et al. Predictions of turbulent shear flows using deep neural networks[J]. Physical Review Fluids, 2019, 4(5):054603.
[77] WU Z, LEE J, MENEVEAU C, et al. Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow[J]. Physical Review Fluids, 2019, 4(2):023902.
[78] ZHANG W, ZHU L, LIU Y, et al. Machine learning methods for turbulence modeling in subsonic flows over airfoils[DB/OL].arXiv preprint:1806.05904,2018.
[79] MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics[J]. Journal of Fluid Mechanics, 2020, 882:A13.
[80] FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics, 2019, 870:106-120.
[81] DENG Z, HE C, LIU Y, et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids, 2019, 31(12):125111.
[82] XIE Y, FRANZ E, CHU M, et al. TempoGAN:A temporally coherent, volumetric GAN for super-resolution fluid flow[J]. ACM Transactions on Graphics, 2018, 37(4):95.
[83] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics:A Navier-Stokes informed deep learning framework for assimilating flow visualization data[EB/OL]. arXiv preprint:1808.04327,2018.
[84] RAISSI M, WANG Z, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861:119-137.
[85] DOVETTA N, FOURES D P G, SIPP D, et al. Mean-flow reconstruction by data-assimilation techniques from PIV-measurements of flow over an idealized airfoil[C]//65th Annual Meeting of the APS Division of Fluid Dynamics, 2012.
[86] DOVETTA N, MCKEON B J, FOURES D P G, et al. Data-assimilation for mean flow and shear stressreconstruction in turbulent pipe flow[C]//21ème Congrès Français de Mécanique, 2013.
[87] HE C, LIU Y, GAN L, et al. Data assimilation and resolvent analysis of turbulent flow behind a wall-proximity rib[J]. Physics of Fluids, 2019, 31(2):025118.
[88] CHARONKO J J, KING C V, SMITH B L, et al. Assessment of pressure field calculations from particle image velocimetry measurements[J]. Measurement Science and Technology, 2010, 21(10):105401.
[89] HE C, LIU Y. Time-resolved reconstruction of turbulent flows using linear stochastic estimation and sequential data assimilation[J]. Physics of Fluids, 2020, 32(10):075106.
[90] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]//53rd Structures, Structural Dynamics, and Materials Conference:Special Session on the Digital Twin, 2012.
[91] RENGANATHAN S A, HARADA K, MAVRIS D N. Aerodynamic data fusion towards the digital twin paradigm[DB/OL]. arXiv preprint:1911.02924,2019.
[92] AFSHAR Y, BHATNAGAR S, PAN S, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2):525-545.
[93] LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879:217-254.
[94] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the Navier-Stokes equations:Application to unsteady wake flow dynamics[DB/OL].arXiv preprint:1710.09099, 2017.
Outlines

/