Reviews

Review and prospects of feedrate optimization in CNC machining

  • WU Baohai ,
  • ZHANG Yang ,
  • ZHENG Zhiyang ,
  • ZHANG Ying ,
  • ZHANG Siqi
Expand
  • 1. Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Engineering Research Center of Advanced Manufacturing Technology for Aero Engine, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-03-09

  Revised date: 2021-03-29

  Online published: 2021-04-29

Supported by

National Key R & D Program of China (2020YFB1710400)

Abstract

Feedrate optimization is an most important link in the realization of Computer Numerical Control(CNC) intelligent machining, and is also a key issue that needs to be solved urgently in the field of intelligent manufacturing in the future. In this paper, three optimization methods are discussed, which are off-line feedrate optimization with the goal of machining efficiency, machining quality, machine stability and constant cutting force, on-line adaptive feedrate optimization with constant cutting force and cutting power, and the integration of the two method. The current research status and theoretical achievements at home and abroad are summarized. The application effects, advantages and disadvantages of various optimization methods are reviewed. Then, several representative breakthrough research directions and future development trends are proposed for intelligent optimization of process parameters. We expect to better realize the independent decision-making and intelligent optimization of the CNC system, improve the processing efficiency and quality, improve the application performance of the CNC system, and promote the independent development and intelligent manufacturing.

Cite this article

WU Baohai , ZHANG Yang , ZHENG Zhiyang , ZHANG Ying , ZHANG Siqi . Review and prospects of feedrate optimization in CNC machining[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525467 -525467 . DOI: 10.7527/S1000-6893.2021.25467

References

[1] LI B, LI L J, HE H B, et al. Research on modal analysis method of CNC machine tool based on operational impact excitation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103:1155-1174.
[2] ZHOU W, ZHU X, WANG J, et al. A new error prediction method for machining process based on a combined model[J]. Mathematical Problems in Engineering, 2018, 2018:3703861.
[3] XU L H, HUANG C Z, LI C W, et al. An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining[J]. Journal of Intelligent Manufacturing, 2021, 32:313-327.
[4] SZCZEPANSKI R, ERWINSKI K, PAPROCKI M. Accelerating PSO based feedrate optimization for NURBS toolpaths using parallel computation with OpenMP[C]//201722nd International Conference on Methods and Models in Automation and Robotics (MMAR). Piscataway:IEEE Press, 2017:431-436.
[5] PRASANTH R S S, HANS RAJ K. Optimization of straight cylindrical turning using artificial bee colony (ABC) algorithm[J]. Journal of the Institution of Engineers (India):Series C, 2017, 98(2):171-177.
[6] 李丽, 邓兴国, 尚川博. 面向能效的曲面数控加工刀具路径优化方法[J]. 机械工程学报, 2017, 53(11):184-194. LI L, DENG X G, SHANG C B. Tool path optimization with high-efficiency and low energy consumption for surface CNC machining[J]. Journal of Mechanical Engineering, 2017, 53(11):184-194(in Chinese).
[7] LI X X, LI W D, HE F Z. A multi-granularity NC program optimization approach for energy efficient machining[J]. Advances in Engineering Software, 2018, 115:75-86.
[8] SOEPANGKAT B O P, PRAMUJATI B, EFFENDI M K, et al. Multi-objective optimization in drilling Kevlar fiber reinforced polymer using grey fuzzy analysis and backpropagation neural network-genetic algorithm (BPNN-GA) approaches[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(4):593-607.
[9] ZHANG Z X, LUO M, ZHANG D H, et al. A force-measuring-based approach for feed rate optimization considering the stochasticity of machining allowance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97:2545-2556.
[10] RAO R V, PAWAR P J. Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms[J]. Applied Soft Computing, 2010, 10(2):445-456.
[11] 王鑫. 基于加工特征的机床关键零件高效数控加工切削参数优化技术研究[D]. 株洲:湖南工业大学, 2014. WANG X. Machining feature based cutting conditions optimization for high performance CNC machining of key machine parts[D]. Zhuzhou:Hunan University of Technology, 2014(in Chinese).
[12] JANG D Y, JUNG J, SEOK J. Modeling and parameter optimization for cutting energy reduction in MQL milling process[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(1):5-12.
[13] ZHAO X, ZHAO H, YANG J X, et al. An adaptive feedrate scheduling method with multi-constraints for five-axis machine tools[M]//LIU H, KUBOTA N, ZHU X, et al. Intelligent Robotics and Applications. Cham:Springer, 2015:553-564.
[14] XU G D, CHEN J H, ZHOU H C, et al. Multi-objective feedrate optimization method of end milling using the internal data of the CNC system[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101:715-731.
[15] ZHANG W B, REN J X. Improving the machining dynamics performance and efficiency for complex channel part manufacturing by planning the tool orientations and feed rate sequence[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107:3663-3689.
[16] PARK H S, NGUYEN T T, KIM J C. An energy efficient turning process for hardened material with multi-criteria optimization[J]. Transactions of FAMENA, 2016, 40(1):1-14.
[17] VU N C, DANG X P, HUANG S C. Multi-objective optimization of hard milling process of AISI H13 in terms of productivity, quality, and cutting energy under nanofluid minimum quantity lubrication condition[J]. Measurement and Control, 2021, 54(5-6):820-834.
[18] MA J W, JIA Z Y, SONG D N, et al. Machining error reduction by combining of feed-speed optimization and toolpath modification in high-speed machining for parts with rapidly varied geometric features[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(4):557-571.
[19] DONG J C, WANG T Y, LI B, et al. Smooth feedrate planning for continuous short line tool path with contour error constraint[J]. International Journal of Machine Tools and Manufacture, 2014, 76:1-12.
[20] MAIYAR L M, RAMANUJAM R, VENKATESAN K, et al. Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis[J]. Procedia Engineering, 2013, 64:1276-1282.
[21] 董雪娇. 基于BP和GA的叶片加工切削用量优化选择方法[D]. 西安:西安工业大学, 2014. DONG X J. Optimal selection of cutting parameters in blade NC machining based on BP neural network and genetic algorithm[D]. Xi'an:Xi'an Technological University, 2014(in Chinese).
[22] YAN J H, LI L. Multi-objective optimization of milling parameters-the trade-offs between energy, production rate and cutting quality[J]. Journal of Cleaner Production, 2013, 52:462-471.
[23] 孙成龙. 基于机床反馈数据和工艺知识的进给速度优化[D]. 武汉:华中科技大学, 2016. SUN C L. Feedrate optimization based on feedback data of machine tools and process knowledge[D]. Wuhan:Huazhong University of Science and Technology, 2016(in Chinese).
[24] NGUYEN T T, CAO L H, DANG X P, et al. Multi-objective optimization of the flat burnishing process for energy efficiency and surface characteristics[J]. Materials and Manufacturing Processes, 2019, 34(16):1888-1901.
[25] ALVAREZ J, BARRENETXEA D, MARQUINEZ J I, et al. Continuous variable feed rate:A novel method for improving infeed grinding processes[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73:53-61.
[26] 韩江, 张国政. 内齿珩轮强力珩齿齿面粗糙度预测与工艺参数优化[J]. 计算机集成制造系统, 2019, 25(2):403-411. HAN J, ZHANG G Z. Gear teeth surface roughness prediction and process parameters optimization on power honing with internal teeth honing wheel[J]. Computer Integrated Manufacturing Systems, 2019, 25(2):403-411(in Chinese).
[27] LIU B Q, XU M J, FANG J P, et al. A feedrate optimization method for CNC machining based on chord error revaluation and contour error reduction[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111:3437-3452.
[28] ZHOU J F, SUN Y W, GUO D M. Adaptive feedrate interpolation with multiconstraints for five-axis parametric toolpath[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1873-1882.
[29] YANG J X, ASLAN D, ALTINTAS Y. A feedrate scheduling algorithm to constrain tool tip position and tool orientation errors of five-axis CNC machining under cutting load disturbances[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 23:78-90.
[30] LEE C H, YANG F Z, ZHOU H C, et al. Cross-directional feed rate optimization using tool-path surface[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(7-8):2645-2660.
[31] BOSETTI P, BERTOLAZZI E. Feed-rate and trajectory optimization for CNC machine tools[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(6):667-677.
[32] LAVERNHE S, TOURNIER C, LARTIGUE C. Kinematical performance prediction in multi-axis machining for process planning optimization[J]. The International Journal of Advanced Manufacturing Technology, 2008, 37(5-6):534-544.
[33] BEUDAERT X, LAVERNHE S, TOURNIER C. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path[J]. International Journal of Machine Tools and Manufacture, 2012, 57:73-82.
[34] ERKORKMAZ K, LAYEGH S E, LAZOGLU I, et al. Feedrate optimization for freeform milling considering constraints from the feed drive system and process mechanics[J]. CIRP Annals, 2013, 62(1):395-398.
[35] SUN Y W, ZHAO Y, XU J T, et al. The feedrate scheduling of parametric interpolator with geometry, process and drive constraints for multi-axis CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2014, 85:49-57.
[36] BHARATHI A, DONG J Y. Feedrate optimization for smooth minimum-time trajectory generation with higher order constraints[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(5-8):1029-1040.
[37] CHEN J, REN F, SUN Y W. Contouring accuracy improvement using an adaptive feedrate planning method for CNC machine tools[J]. Procedia CIRP, 2016, 56:299-305.
[38] NI H P, ZHANG C R, JI S, et al. A bidirectional adaptive feedrate scheduling method of NURBS interpolation based on S-shaped ACC/DEC algorithm[J]. IEEE Access, 2018, 6:63794-63812.
[39] WANG L, CAO J F. A look-ahead and adaptive speed control algorithm for high-speed CNC equipment[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63:705-717.
[40] HE G Y, MA W K, YU G M, et al. Modeling and experimental validation of cutting forces in five-axis ball-end milling based on true tooth trajectory[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78:189-197.
[41] GUO Q, ZHAO B, JIANG Y, et al. Cutting force modeling for non-uniform helix tools based on compensated chip thickness in five-axis flank milling process[J]. Precision Engineering, 2018, 51:659-681.
[42] QI H J, TIAN Y L, ZHANG D W. Machining forces prediction for peripheral milling of low-rigidity component with curved geometry[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64:1599-1610.
[43] ZHANG X, ZHANG J, PANG B, et al. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface[J]. International Journal of Machine Tools and Manufacture, 2016, 104:26-36.
[44] CAI Y J, SHEN H, QI T L. Research on feedrate optimization based on cutting force model with double effect for the ball-end milling[J]. Advanced Materials Research, 2011, 291-294:2965-2969.
[45] WANG L P, YUAN X, SI H, et al. Feedrate scheduling method for constant peak cutting force in five-axis flank milling process[J]. Chinese Journal of Aeronautics, 2020, 33(7):2055-2069.
[46] 刘献礼, 丁云鹏, 岳彩旭, 等. 基于载荷控制的拐角铣削进给优化[J]. 机械工程学报, 2016, 52(19):189-196. LIU X L, DING Y P, YUE C X, et al. Feedrate optimization based on load control for corner-milling[J]. Journal of Mechanical Engineering, 2016, 52(19):189-196(in Chinese).
[47] ZUPERL U, CUS F, REIBENSCHUH M. Neural control strategy of constant cutting force system in end milling[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(3):485-493.
[48] PARK H S, QI B W, DANG D V, et al. Development of smart machining system for optimizing feedrates to minimize machining time[J]. Journal of Computational Design and Engineering, 2018, 5(3):299-304.
[49] 郝文峰. 切削力指令域示波器设计及加工优化研究[D]. 武汉:华中科技大学, 2017. HAO W F. Development of the cutting force instruction domain oscilloscope and research on processing optimization[D]. Wuhan:Huazhong University of Science and Technology, 2017(in Chinese).
[50] ZHANG C. Off-line feedrate optimization based on simulation of cutting forces[J]. Key Engineering Materials, 2009, 407-408:408-411.
[51] 张臣, 周来水, 安鲁陵, 等. 基于铣削力仿真的离线进给速度优化技术[J]. 南京航空航天大学学报, 2009, 41(3):358-363. ZHANG C, ZHOU L S, AN L L, et al. Optimization of off-line feedrate based on simulation of milling forces[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(3):358-363(in Chinese).
[52] 黄博豪. 航空叶片切削进给优化研究[D]. 武汉:华中科技大学, 2015. HUANG B H. Federate scheduling for NC machining of aero engine fan blades[D]. Wuhan:Huazhong University of Science and Technology, 2015(in Chinese).
[53] 付中涛, 杨文玉, 张彦辉, 等. 基于切削力预测模型的复杂曲面铣削进给速度优化[J]. 中国科学:技术科学, 2016, 46(7):722-730. FU Z T, YANG W Y, ZHANG Y H, et al. Feedrate optimization of complex surface milling based on predictive model of cutting force[J]. Scientia Sinica (Technologica), 2016, 46(7):722-730(in Chinese).
[54] LIANG S Y, HECKER R L, LANDERS R G. Machining process monitoring and control:The state-of-the-art[J]. Journal of Manufacturing Science and Engineering, 2004, 126(2):297-310.
[55] MATSUBARA A, IBARAKI S. Monitoring and control of cutting forces in machining processes:A review[J]. International Journal of Automation Technology, 2009, 3(4):445-456.
[56] KIM S I, LANDERS R G, ULSOY A G. Robust machining force control with process compensation[J]. Journal of Manufacturing Science and Engineering, 2003, 125(3):423-430.
[57] 唐琳. 基于主轴电流的恒负荷加工控制方法的研究与实现[D]. 武汉:华中科技大学, 2005. TANG L. Research and implement of constant cutting load machining control method based on spindle motor current[D]. Wuhan:Huazhong University of Science and Technology, 2005(in Chinese).
[58] 胡世广. 具备智能特征的开放式数控系统构建技术研究[D]. 天津:天津大学, 2008. HU S G. Research on technology of building open CNC system with intelligent characteristic[D]. Tianjin:Tianjin University, 2008(in Chinese).
[59] CUS F, MILFELNER M, BALIC J. An intelligent system for monitoring and optimization of ball-end milling process[J]. Journal of Materials Processing Technology, 2006, 175(1-3):90-97.
[60] 郑金兴, 张铭钧, 孟庆鑫. 铣削加工过程监测和优化智能系统开发[J]. 仪器仪表学报, 2007, 28(S1):74-78. ZHENG J X, ZHANG M J, MENG Q X. Development of an intelligent system for monitoring and optimization for CNC milling[J]. Chinese Journal of Scientific Instrument, 2007, 28(S1):74-78(in Chinese).
[61] 柳万珠, 刘强. 切削加工过程的在线监测与自适应控制[J]. 航空制造技术, 2012, 55(14):86-90. LIU W Z, LIU Q. Online monitoring and adaptive control for cutting process[J]. Aeronautical Manufacturing Technology, 2012, 55(14):86-90(in Chinese).
[62] 韩振宇, 金鸿宇, 付云忠, 等. 基于有限元数值模型和进给速度优化的薄壁件侧铣变形在线控制[J]. 机械工程学报, 2017, 53(21):190-199. HAN Z Y, JIN H Y, FU Y Z, et al. FEM numerical model and feedrate optimization based on-line deflection control of thin-walled parts in flank milling[J]. Journal of Mechanical Engineering, 2017, 53(21):190-199(in Chinese).
[63] RIDWAN F, XU X, HO F C L. Adaptive execution of an NC program with feed rate optimization[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(9-12):1117-1130.
[64] LIAN R J, LIN B F, HUANG J H. A grey prediction fuzzy controller for constant cutting force in turning[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):1047-1056.
[65] 林献坤, 李爱平, 张为民. 应用基于学习的模糊逻辑智能选择铣削加工参数[J]. 中国机械工程, 2007, 18(9):1076-1080. LIN X K, LI A P, ZHANG W M. Application of learning based fuzzy logic in intelligent selection of machining parameters for milling process[J]. China Mechanical Engineering, 2007, 18(9):1076-1080(in Chinese).
[66] KIM D, JEON D. Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors[J]. Precision Engineering, 2011, 35(1):143-152.
[67] LIN J, LIAN R J. Hybrid self-organizing fuzzy and radial basis-function neural-network controller for constant cutting force in turning[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53:921-933.
[68] HABER R, DEL TORO R M, GODOY J, et al. Intelligent tuning of fuzzy controllers by learning and optimization[M]//Atlantis Computational Intelligence Systems. Paris:Atlantis Press, 2014:135-158.
[69] NJIRI J G, IKUA B W, NYAKOE G N. Feedrate optimization for ball-end milling of sculptured surfaces using fuzzy logic controller[J]. World Academy of Science Engineering and Technology, 2011, 5(8):1660-1668.
[70] 赵建华, 牟恩旭. 基于i5OS系统的主轴切削负载在线自适应优化应用程序[J]. 机械制造, 2019, 57(11):74-77. ZHAO J H, MU E X. Online adaptive optimization APP for spindle cutting load based on i5OS system[J]. Machinery, 2019, 57(11):74-77(in Chinese).
[71] 雷萍. 基于现场总线的恒功率约束切削加工自适应控制[J]. 现代制造工程, 2007(7):40-42. LEI P. Adaptive control of milling process based on fieldbus and constant spindle power constrain[J]. Modern Manufacturing Engineering, 2007(7):40-42(in Chinese).
[72] 黄华, 李爱平, 林献坤. 基于恒功率约束的自适应加工控制系统开发[J]. 同济大学学报(自然科学版), 2008, 36(7):956-961. HUANG H, LI A P, LIN X K. Fuzzy control system for milling machining[J]. Journal of Tongji University (Natural Science), 2008, 36(7):956-961(in Chinese).
[73] 徐剑, 叶文华, 胡国志, 等. 基于开放式数控系统的恒功率自适应控制研究[J]. 制造技术与机床, 2015(8):38-42. XU J, YE W H, HU G Z, et al. Research on constant power adaptive control based on open CNC system[J]. Manufacturing Technology & Machine Tool, 2015(8):38-42(in Chinese).
[74] SARHAN A A D, MATSUBARA A. Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling[J]. Robotics and Computer-Integrated Manufacturing, 2015, 34:133-139.
[75] 李曦, 曹为. 基于RBF神经网络的恒铣削功率控制的研究[J]. 机械, 2006, 33(12):22-24, 33. LI X, CAO W. Study on the constant milling power control based on the RBF neural network[J]. Machinery, 2006, 33(12):22-24, 33(in Chinese).
[76] 赖兴余, 叶邦彦, 鄢春艳, 等. 基于现场总线的铣削加工过程自适应模糊控制[J]. 华南理工大学学报(自然科学版), 2005, 33(5):7-10. LAI X Y, YE B Y, YAN C Y, et al. Adaptive fuzzy control of milling process based on fieldbus[J]. Journal of South China University of Technology (Natural Science), 2005, 33(5):7-10(in Chinese).
[77] NIKOL'SKII A A, KOROLEV V V. Adaptive control in high-speed electric drives of a lathe feed for noncircular turning[J]. Russian Electrical Engineering, 2016, 87(4):231-234.
[78] PROSKURYAKOV N A, NEKRASOV R Y, STARIKOV A I, et al. Fuzzy controllers in the adaptive control system of a CNC lathe[J]. Russian Engineering Research, 2018, 38(3):220-222.
[79] SIMSIR U. Torque-controlled adaptive speed control on a CNC marble saw machine[J]. Advances in Mechanical Engineering, 2015, 7(2):839827.
[80] 唐普洪, 王忠伟. CNC数控加工OMAT优控系统综述[J]. 智能制造, 2007(5):108-111. TANG P H, WANG Z W. Overview of OMAT optimal control system for CNC machining[J]. Intelligent Manufacturing, 2007(5):108-111(in Chinese).
[81] 王星辉, 罗丰, 卢秀丽, 等. ARTIS刀具监控软件在油孔钻机床上的开发应用[J]. 工业, 2015, 10(20):125-127. WANG X H, LUO F, LU X L, et al. Development and application of ARTIS tool monitoring software on oil hole drilling machine tools[J]. Industry, 2015, 10(20):125-127(in Chinese).
[82] LI D D, XU M M, WEI C J, et al. A dynamic threshold-based fuzzy adaptive control algorithm for hard sphere grinding[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60:923-932.
[83] D'URSO P, GIL M Á. Fuzzy data analysis and classification[J]. Advances in Data Analysis and Classification, 2017, 11(4):645-657.
[84] KONDRATENKO Y P, KOZLOV A V. Generation of rule bases of fuzzy systems based on modified ant colony algorithms[J]. Journal of Automation and Information Sciences, 2019, 51(3):4-25.
[85] 邵克勇, 张鸿雁, 李飞, 等. 一种基于GA的模糊控制规则优化新方法[J]. 化工自动化及仪表, 2011, 38(3):261-264, 306. SHAO K Y, ZHANG H Y, LI F, et al. GA-based new optimization method for fuzzy control rules[J]. Control and Instruments in Chemical Industry, 2011, 38(3):261-264, 306(in Chinese).
[86] REN A H, BAI J J, MA J X. Research on intelligent transportation system based on fuzzy neural network[J]. IOP Conference Series:Materials Science and Engineering, 2020, 768:062114.
[87] ZUPERL U, CUS F, REIBENSCHUH M. Modeling and adaptive force control of milling by using artificial techniques[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1805-1815.
[88] ZHANG L. A study on fuzzy control learning algorithms based on cascade observers[J]. International Journal of Simulation:Systems, Science & Technology, 2016, 17(39):1-6.
[89] ZUPERL U, CUS F. Simulation and visual control of chip size for constant surface roughness[J]. International Journal of Simulation Modelling, 2015, 14(3):392-403.
[90] 陈立军, 赵丽丽, 周正兴. 基于规则自寻优的过热汽温模糊控制[J]. 化工自动化及仪表, 2010, 37(1):5-7, 15. CHEN L J, ZHAO L L, ZHOU Z X. Fuzzy control of superheated steam temperature based on rules self-optimizing[J]. Control and Instruments in Chemical Industry, 2010, 37(1):5-7, 15(in Chinese).
[91] 高亮, 杨扬, 李新宇. 数控加工参数优化的研究现状与进展[J]. 航空制造技术, 2010, 53(22):48-51. GAO L, YANG Y, LI X Y. Research and development of optimization of NC machining parameters[J]. Aeronautical Manufacturing Technology, 2010, 53(22):48-51(in Chinese).
[92] CUS F, ZUPERL U, KIKER E, et al. Adaptive self-learning controller design for feedrate maximisation of machining process[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 31(2):469-476.
[93] XIONG G, LI Z L, DING Y, et al. Integration of optimized feedrate into an online adaptive force controller for robot milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106:1533-1542.
[94] 李杰. 基于自适应控制技术的铣削参数优化研究[D]. 天津:天津大学, 2016. LI J. Research on optimization of milling parameters based on adaptive control technology[D]. Tianjin:Tianjin University, 2016(in Chinese).
[95] ZUPERL U, CUS F. System for off-line feedrate optimization and neural force control in end milling[J]. International Journal of Adaptive Control and Signal Processing, 2012, 26(2):105-123.
[96] ZUPERL U. Swarm intelligence combined with neural network objective function modelling for turning process optimization[J]. Proceedings in Manufacturing Systems, 2013, 8(2):69-74.
[97] 刘恒丽, 王勇, 董靖川. 数控铣削加工参数离线-在线优化研究及应用[J]. 机械工程与技术, 2020, 9(1):13-25. LIU H L, WANG Y, DONG J C. Research and application of offline-online optimization of CNC milling processing parameters[J]. Mechanical Engineering and Technology, 2020, 9(1):13-25(in Chinese).
[98] LIU H L, WANG T Y, WANG D. Constant cutting force control for CNC machining using dynamic characteristic-based fuzzy controller[J]. Shock and Vibration, 2015, 2015:406294.
[99] 刘恒丽. 面向机床功效的数控铣削智能优化技术及应用研究[D]. 天津:天津大学, 2017. LIU H L. Research on intelligent optimization technology and application of NC milling process for machine tool efficiency[D]. Tianjin:Tianjin University, 2017(in Chinese).
Outlines

/