Articles

Surface characteristics formation mechanism of ablated monocrystalline silicon by UV nanosecond pulsed laser

  • ZHANG Quanli ,
  • CHU Chenglong ,
  • ZHAI Jianchao ,
  • WANG Yukai ,
  • ZHANG Zhen ,
  • XU Jiuhua
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-01-29

  Revised date: 2021-03-05

  Online published: 2021-04-29

Supported by

China Postdoctoral Science Foundation (2019TQ0151); Open Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (KFJJ20200518)

Abstract

Laser surface microstructures of monocrystalline silicon can effectively improve the surface friction characteristics, optical reflectivity and hydrophobicity of the material, broadening the application range of monocrystalline silicon. To obtain a good surface texture, an experimental study on the surface array texture of monocrystalline silicon processed by Ultraviolet (UV) nanosecond laser was carried out based on analysis of the interaction mechanism between laser and material in this paper. The area method is applied to calculate the ablation threshold of monocrystalline silicon by the UV nanosecond laser. Subsequently, the influences of the parameters including the laser output power, pulse repetition frequency, spot scanning speed and number of scanning times on the groove width and depth were studied by the single factor method. The typical morphology characteristics and formation mechanism of the ablated groove were analyzed, and the influences of process parameters on microstructure characteristics were obtained. With the selected processing parameters, the microstructures including the lattice structure, square array, hexagon array, sine wave array and helix structure were fabricated on the surface of monocrystalline silicon.

Cite this article

ZHANG Quanli , CHU Chenglong , ZHAI Jianchao , WANG Yukai , ZHANG Zhen , XU Jiuhua . Surface characteristics formation mechanism of ablated monocrystalline silicon by UV nanosecond pulsed laser[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525341 -525341 . DOI: 10.7527/S1000-6893.2021.25341

References

[1] 周强. 飞秒激光制备单晶硅表面微结构研究[D]. 西安:西安邮电大学, 2013:3-15. ZHOU Q. Silicon surface micro-structure fabrication by femtosecond laser[D]. Xi'an:Xi'an University of Posts and Telecommunications, 2013:3-15(in Chinese).
[2] 李春生, 刘庆琳. 中国单晶硅生产工艺专利现状分析[J]. 新材料产业, 2019(9):61-64. LI C S, LIU Q L. Analysis on patent status of monocrystalline silicon production process in China[J]. Advanced Materials Industry, 2019(9):61-64(in Chinese).
[3] 廖路. 单晶硅表面减反射微结构设计与成型技术研究[D]. 北京:中国工程物理研究院, 2019:4-10. LIAO L. Design and fabrication of antireflection microstructure on monocrystalline silicon surface[D]. Beijing:China Academy of Engineering Physics, 2019:4-10(in Chinese).
[4] 刘清原. 激光加工中单晶硅损伤机理研究[D]. 桂林:桂林电子科技大学, 2019:6-15. LIU Q Y. Damage mechanism of single crystal silicon in laser machining[D]. Guilin:Guilin University of Electronic Technology, 2019:6-15(in Chinese).
[5] MUKAIDA M, YAN J W. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo[J]. International Journal of Machine Tools and Manufacture, 2017, 115:2-14.
[6] HEIDARI M, YAN J W. Ultraprecision surface flattening of porous silicon by diamond turning[J]. Precision Engineering, 2017, 49:262-277.
[7] 冯朝鹏, 程可, 曹凯强, 等. 激光诱导自由曲面周期性纳米结构图案与着色[J]. 激光与光电子学进展, 2020, 57(11):111423. FENG C P, CHENG K, CAO K Q, et al. Laser induced periodic nanostructure pattern and coloring on free-form surface[J]. Laser & Optoelectronics Progress, 2020, 57(11):111423(in Chinese).
[8] RIEDEL D, HERNANDEZ-POZOS J L, PALMER R E, et al. Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6[J]. Applied Physics A, 2004, 78(3):381-385.
[9] CROUCH C H, CAREY J E, WARRENDER J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 2004, 84(11):1850-1852.
[10] MA Y C, SI J H, SUN X H, et al. Progressive evolution of silicon surface microstructures via femtosecond laser irradiation in ambient air[J]. Applied Surface Science, 2014, 313:905-910.
[11] STARINSKIY S V, RODIONOV A A, SHUKHOV Y G, et al. Formation of periodic superhydrophilic microstructures by infrared nanosecond laser processing of single-crystal silicon[J]. Applied Surface Science, 2020, 512:145753.
[12] MUR J, PIRKER L, OSTERMAN N, et al. Silicon crystallinity control during laser direct microstructuring with bursts of picosecond pulses[J]. Optics Express, 2017, 25(21):26356-26364.
[13] WANG Q W, ZHANG Q L, ZHANG Z, et al. Material removal and surface formation mechanism of C-plane sapphire in multipass ablation by a nanosecond UV laser[J]. Ceramics International, 2020, 46(13):21461-21470.
[14] SHAHEEN M E, GAGNON J E, FRYER B J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers[J]. Optics and Lasers in Engineering, 2019, 119:18-25.
[15] ZHANG J J, ZHAO L, ROSENKRANZ A, et al. Nanosecond pulsed laser ablation of silicon-Finite element simulation and experimental validation[J]. Journal of Micromechanics and Microengineering, 2019, 29(7):075009.
[16] WANG X, SHEN Z H, LU J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108(3):033103.
[17] 王克甫, 张秋慧. 高能纳秒激光烧蚀单晶硅的微观结构[J]. 激光杂志, 2012, 33(5):36-37. WANG K F, ZHANG Q H. The ablation microstructures of mono crystalline silicon by high power nanosecond laser[J]. Laser Journal, 2012, 33(5):36-37(in Chinese).
[18] 杨焕, 黄珊, 段军, 等. 飞秒与纳秒激光刻蚀单晶硅对比研究[J]. 中国激光, 2013, 40(1):95-100. YANG H, HUANG S, DUAN J, et al. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese Journal of Lasers, 2013, 40(1):95-100(in Chinese).
[19] 杨雄. 单晶硅紫外激光微加工工艺研究[D]. 武汉:华中科技大学, 2011:7-14. YANG X. A study on UV laser micro-machining single-crystal silicon[D]. Wuhan:Huazhong University of Science and Technology, 2011:7-14(in Chinese).
[20] 肖荣诗, 陈铠, 陈继民, 等. CO2激光焊接光致等离子体屏蔽机制的实验研究[J]. 激光技术, 2001, 25(3):238-241. XIAO R S, CHEN K, CHEN J M, et al. Experimental research of the plasma shielding mechanism in the process of CO2 laser welding[J]. Laser Technology, 2001, 25(3):238-241(in Chinese).
[21] 肖超, 王毕艺, 官上洪, 等. 不同模式纳秒激光诱导单晶硅损伤特性研究[J]. 激光杂志, 2019, 40(11):67-70. XIAO C, WANG B Y, GUAN S H, et al. Study on damage characteristics of monocrystalline silicon induced by nanosecond laser with different modes[J]. Laser Journal, 2019, 40(11):67-70(in Chinese).
[22] ZHANG Q L, WANG Q W, ZHANG Z, et al. Surface micro-structuring of Sapphire by a Q-switched DPSS nanosecond pulsed laser[J]. Materials Science in Semiconductor Processing, 2020, 107:104864.
[23] XIA K B, REN N F, WANG H X, et al. Analysis for effects of ultrasonic power on ultrasonic vibration-assisted single-pulse laser drilling[J]. Optics and Lasers in Engineering, 2018, 110:279-287.
[24] 段兴跃, 李小康, 程谋森, 等. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究[J]. 物理学报, 2016, 65(19):197901. DUAN X Y, LI X K, CHENG M S, et al. Numerical investigation on shielding properties of the laser ablation plume of polymer doped metal[J]. Acta Physica Sinica, 2016, 65(19):197901(in Chinese).
[25] LIANG L, YUAN J D, LIN G Z. Effect of the scanning speed on the microgroove formation regime in nanosecond-pulsed laser scanning ablation of cermet[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2):97-107.
Outlines

/