Efficient algorithm for calculating coverage of mega-constellation

  • LYU Linli ,
  • XIAO Xinxin ,
  • FENG Guanhua ,
  • LI Wenhao
Expand
  • 1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-12-28

  Revised date: 2021-02-22

  Online published: 2021-04-29

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences (A1) (XDA17030200); Key Project of Chinese National Programs for Fundamental Research and Development (973) (2013CB733000); National Natural Science Foundation of China (11002143)

Abstract

A new coverage analysis approach, Parallel Mercator Projection Superposition (PMPS), is proposed for the design and construction of mega-constellation. In this method, the image superposition is applied to the Mercator projection map of the constellation coverage area to conduct coverage calculation. The method breaks through the correlation constraint between the grid number and satellite number in the traditional Grid Point Approach (GPA), and significantly reduces the sensitivity of computing consumption to the satellites number. Given calculation accuracy, as the number of satellites increases, the ratio of PMPS calculation consumption to GPA's gradually increases, and eventually tends to a limit value, which is positively correlated with the number of GPA grids. The simulation results show that in the global coverage analysis, when the number of GPA grids is 4 orders of magnitude and meets the specified calculation error, the efficiency of PMPS without parallel computing can be increased by 1 to 2 levels relative to that of GPA. When the number of GPA grids is larger, e.g., at 5 orders of magnitude, the efficiency of PMPS without parallel computing is expected to be increased by 2 to 3 levels relative to that of GPA.

Cite this article

LYU Linli , XIAO Xinxin , FENG Guanhua , LI Wenhao . Efficient algorithm for calculating coverage of mega-constellation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 325173 -325173 . DOI: 10.7527/S1000-6893.2021.25173

References

[1] LI J, LU H C, XUE K P, et al. Temporal netgrid model-based dynamic routing in large-scale small satellite networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6):6009-6021.
[2] JAKOB P, SHIMIZU S, YOSHIKAWA S, et al. Optimal satellite constellation spare strategy using multi-echelon inventory control[J]. Journal of Spacecraft and Rockets, 2019, 56(5):1449-1461.
[3] MCDOWELL J C. The low earth orbit satellite population and impacts of the SpaceX starlink constellation[J]. The Astrophysical Journal Letters, 2020, 892(2):L36.
[4] DEL PORTILLO I, CAMERON B G, CRAWLEY E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159:123-135.
[5] GIAMBENE G, KOTA S, PILLAI P. Satellite-5G integration:A network perspective[J]. IEEE Network, 2018, 32(5):25-31.
[6] REILAND N, ROSENGREN A J, ASCHENBRENNER M. The dynamical placement of mega-constellations[C]//42nd COSPAR Scientific Assembly, 2018, 42-43.
[7] PARKINSON C L. Aqua:An earth-observing satellite mission to examine water and other climate variables[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):173-183.
[8] SALOMONSON V V, BARNES W, MASUOKA E J. Introduction to MODIS and an overview of associated activities[J]. Earth Science Satellite Remote Sensing, 2006:12-32.
[9] BARNES W L, SALOMONSON V V. MODIS:A global imaging spectroradiometer for the earth observing system[C]//Proc SPIE 10269, Optical Technologies for Aerospace Sensing:A Critical Review, 1992, 10269:280-302.
[10] XIONG X X, CHE N Z, BARNES W. Terra MODIS on-orbit spatial characterization and performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):355-365.
[11] STOLL E, LETSCHNIK J, WILDE M, et al. The future role of relay satellites for orbital telerobotics[J]. Advances in Space Research, 2012, 50(7):864-880.
[12] STOLL E, JAEKEL S, KATZ J, et al. SPHERES interact-Human-machine interaction aboard the International Space Station[J]. Journal of Field Robotics, 2012, 29(4):554-575.
[13] STOLL E, SAENZ-OTERO A, TWEDDLE B. Multimodal human spacecraft interaction in remote environments[M]//Machine Learning and Systems Engineering, 2010:1-15.
[14] LUNDIN R, STOLL E. Coverage time variation in a near-earth data relay satellite system[C]//57th International Astronautical Congress. Reston, Virigina:AIAA, 2006
[15] HARDER J, STOLL E, SCHIFFNER M, et al. A compact, light-weight high data-rate antenna system for remote-sensing orbiters and space exploration[J]. Acta Astronautica, 2009, 65(11-12):1738-1744.
[16] LEINZ M R, CHEN C T, SCOTT P, et al. Modeling, simulation, testing, and verification of the orbital express autonomous rendezvous and capture sensor system (arcss)[C]//SPIE Defense and Security Symposium. Proc SPIE 6958, Sensors and Systems for Space Applications II, 2008, 6958:75-87.
[17] HAZRA S, MUKHOPADHYAY A, GHOSH A R, et al. Environment and earth observation[M]. Cham:Springer International Publishing, 2017.
[18] LEWIS H, RADTKE J, ROSSI A, et al. Sensitivity of the space debris environment to large constellations and small satellites[J]. Journal of the British Interplanetary Society, 2017, 70:105-117.
[19] GUIDOTTI A, VANELLI-CORALLI A, KODHELI O, et al. Integration of 5G technologies in LEO mega-constellations[DB/OL]. arXiv preprint:1709.05807, 2017
[20] OKATI N, RIIHONEN T, KORPI D, et al. Downlink coverage and rate analysis of low earth orbit satellite constellations using stochastic geometry[J]. IEEE Transactions on Communications, 2020, 68(8):5120-5134.
[21] DE WECK O L, DE NEUFVILLE R, CHAIZE M. Staged deployment of communications satellite constellations in low earth orbit[J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(3):119-136.
[22] DE WECK O L, DE NEUFVILLE R, CHAIZE M. Enhancing the economics of communication satellites via orbital reconfigurations and staged deployment[C]//AIAA Space 2003 Conference & Exposition. Reston:AIAA, 2003.
[23] CHAIZE M. Enhancing the economics of satellite constellations via staged deployment and orbital reconfiguration[D]. Cambridge:Massachusetts Institute of Technology, 2003.
[24] LEWIS P, GÓMEZ-DANS J, KAMINSKI T, et al. An earth observation land data assimilation system (EO-LDAS)[J]. Remote Sensing of Environment, 2012, 120:219-235.
[25] MORTARI D, WILKINS M P, BRUCCOLERI C. The flower constellations[J]. The Journal of the Astronautical Sciences, 2004, 52(1-2):107-127.
[26] JIANG Y, ZHANG G X, LI G X, et al. Study on orthogonal IGSO global communication satellite constellation[C]//20116th International ICST Conference on Communications and Networking in China (CHINACOM). Piscataway:IEEE Press, 2011:1064-1068.
[27] RIDER L. Optimized polar orbit constellations for redundant earth coverage[J]. Journal of the Astronautical Sciences, 1985, 33(2):147-161.
[28] BESTE D C. Design of satellite constellations for optimal continuous coverage[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(3):466-473.
[29] DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets, 2017, 54(6):1294-1303.
[30] ULYBYSHEV Y P. Design of satellite constellations with continuous coverage on elliptic orbits of Molniya type[J]. Cosmic Research, 2009, 47(4):310-321.
[31] MORRISON J J. A system of sixteen synchronous satellites for worldwide navigation and surveillance[R]. Washington,D.C.:Federal Aviation Administration, 1973.
[32] 周振宇, 郭广礼, 贾新果. 大地主题解算方法综述[J]. 测绘科学, 2007, 32(4):190-191, 174, 200. ZHOU Z Y, GUO G L, JIA X G. A review on solution of geodetic problem[J]. Science of Surveying and Mapping, 2007, 32(4):190-191, 174, 200(in Chinese).
[33] HOOIJBERG M. Practical geodesy:Using computers[M]. Berlin:Springer, 1997
[34] AMDAHL G M. Validity of the single processor approach to achieving large scale computing capabilities[C]//Proceedings of the April 18-20, 1967, spring joint computer conference on-AFIPS'67(Spring). New York:ACM Press, 1967:483-485.
[35] GUSTAFSON J L. Reevaluating Amdahl's law[J]. Communications of the ACM, 1988, 31(5):532-533.
[36] HILL M D, MARTY M R. Amdahl's law in the multicore era[J]. Computer, 2008, 41(7):33-38.
[37] BRÄUNL T, FEYRER S, RAPF W, et al. Skeletonizing[M]//Parallel Image Processing. Berlin, Heidelberg:Springer, 2001:33-49.
[38] YANG Z Y, ZHU Y T, PU Y. Parallel image processing based on CUDA[C]//2008 International Conference on Computer Science and Software Engineering. Piscataway:IEEE Press, 2008:198-201.
[39] PINEDA J. A parallel algorithm for polygon rasterization[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques-SIGGRAPH'88. New York:ACM Press, 1988:17-20.
[40] PINEDA J. A parallel algorithm for polygon rasterization[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques-SIGGRAPH'88. New York:ACM Press, 1988:17-20.
[41] WAUGH T C, HOPKINS S. An algorithm for polygon overlay using cooperative parallel processing[J]. International Journal of Geographical Information Systems, 1992, 6(6):457-467.
[42] WANG Y F, CHEN Z J, CHENG L, et al. Parallel scanline algorithm for rapid rasterization of vector geographic data[J]. Computers & Geosciences, 2013, 59:31-40.
[43] 曹建立, 陈志奎, 王宇新, 等. 高分辨图像区域填充的并行计算方法[J]. 计算机工程, 2021, 47(9):217-226, 234. CAO J L, CHEN Z K, WANG Y X, et al. Parallel computing method of region filling for high-resolution Images[J]. Computer Engineering, 2021, 47(9):217-226, 234(in Chinese).
[44] 安洛生, 王利敏. 并行区域填充算法研究[J]. 现代计算机(专业版), 2014(34):6-8. AN L S, WANG L M. Research on the parallel region filling algorithm[J]. Modern Computer, 2014(34):6-8(in Chinese).
Outlines

/