Special Topic: Operation Safety of Aero-engine

Structured Bayesian sparse representation of aero-engine bearing failures

  • ZHANG Shuo ,
  • LIU Zhiwen
Expand
  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2020-12-04

  Revised date: 2020-12-30

  Online published: 2021-04-29

Supported by

National Natural Science Foundation of China (52075080, U1733107); Aeronautical Science Foundation of China (20173319003)

Abstract

The instantaneous impact component associated with the fault in the aero-engine bearing vibration signal has not only sparseness in the time-frequency transform domain but also specific structural characteristics. Traditional greedy algorithms and their improved reconstruction methods, represented by the Orthogonal Matching Pursuit (OMP) algorithm, usually only use the sparseness of the signal as a whole, but not the possible impact of structural interference, resulting in lower solution efficiency. This paper proposes a structured Bayesian sparse representation method for the parameter optimization dictionary. First, on the basis of the OMP algorithm, a Structured Bayesian Orthogonal Matching Pursuit (SBOMP) sparse representation model is developed based on the Bayesian probability model to promote the sparse reconstruction effect, so as to obtain the sparse representation of signals. Second, considering the characteristics of bearing fault vibration signals, a time-frequency impulse atomic library that can better match the analysis signals is constructed to reduce redundancy of the dictionary. The Grey Wolf Optimization (GWO) algorithm is introduced into the SBOMP model based on the time-frequency impulse dictionary to provide an efficient atom selection strategy for the SBOMP model and reduce complexity of the sparse model. Simulation and experimental results show that the method proposed in this paper can more effectively reduce interference of background noise and impurity frequencies, which verifies the effectiveness and applicability of the method proposed for extraction of aero-engine bearing fault features.

Cite this article

ZHANG Shuo , LIU Zhiwen . Structured Bayesian sparse representation of aero-engine bearing failures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 625056 -625056 . DOI: 10.7527/S1000-6893.2021.25056

References

[1] WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonline Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223291(in Chinese). 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2): 223291.
[2] ZHENG J T, DENG S E, ZHANG W H, et al. Atypical failure mechanism of aero-engine main shaft roller bearing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 423347(in Chinese). 郑金涛, 邓四二, 张文虎, 等. 航空发动机主轴滚子轴承非典型失效机理[J]. 航空学报, 2020, 41(5): 423347.
[3] MIAO X W. A comprehensive prognostics approach for prediction aero-engine bearing life[D]. Beijing: Beihang University, 2008: 1-3(in Chinese). 苗学问. 航空发动机主轴承使用寿命预测技术研究[D]. 北京: 北京航空航天大学, 2008: 1-3.
[4] WANG H W, CHEN G, CHEN L B, et al. A fault monitoring technique for wear of aero-engine rolling bearing[J]. Journal of Aerospace Power, 2014, 9(29): 2256-2263(in Chinese). 王洪伟, 陈果, 陈立波, 等. 一种航空发动机滚动轴承磨损故障监测技术[J]. 航空动力学报, 2014, 9(29): 2256-2263.
[5] WEI X K, YANG L, LIU F, et al. Aeroengine prognostics and health management[M]. Beijing: National Defense Industry Press, 2014: 27-31(in Chinese). 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014: 27-31.
[6] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[7] AMIN V S, ZHANG Y D, HIMED B. Sparsity-based time-frequency representation of FM signals with burst missing samples[J]. Signal Processing, 2019, 155: 25-43.
[8] KONG Y, WANG T Y, FENG Z P, et al. Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine[J]. Renewable Energy, 2020, 152: 754-769.
[9] YANG B, YANG Z, SUN R. Fast nonlinear chirplet dictionary-based sparse decomposition for rotating machinery fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4736-4745.
[10] ZHANG H, DU Z H, FANG Z W, et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(1): 97-105(in Chinese). 张晗, 杜朝晖, 方作为, 等. 基于稀疏分解理论的航空发动机轴承故障诊断[J]. 机械工程学报, 2015, 51(1): 97-105.
[11] WU R, HUANG W, CHEN D. The exact support recovery of sparse signals with noise via orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2013, 20(4): 403-406.
[12] SCHNITER P, POTTER L C, ZINIEL J. Fast bayesian matching pursuit[C]//2008 Information Theory and Applications Workshop. Piscataway: IEEE Press, 2008: 326-333.
[13] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
[14] HERZET C, DRÉMEAU A. Bayesian pursuit algorithms[C]//201018th European Signal Processing Conference. Piscataway, NJ: IEEE Press, 2010: 1474-1478.
[15] DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[16] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
[17] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[18] FEI X Q, MENG Q F, HE Z J. Signal decomposition with matching pursuits and technology of extracting machinery fault feature based on impulse time-frequency atom[J]. Jounal of Vibration and Shock, 2003, 22(2): 28-31(in Chinese). 费晓琪, 孟庆丰, 何正嘉. 基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J]. 振动与冲击, 2003, 22(2): 28-31.
[19] QIAO B D, CHEN G, GE K Y, et al. A new knowledge acquisition method for fault diagnosis of rolling bearings[J]. Bearing, 2011(2): 39-44(in Chinese). 乔保栋, 陈果, 葛科宇, 等. 一种滚动轴承故障知识获取的新方法[J]. 轴承, 2011(2): 39-44.
[20] CHEN G. Nanjing University of aeronautics and astronautics intelligent diagnosis and expert system Lab[EB/OL]. (2020-11-30)[2020-12-04]. http://ides.nuaa.edu.cn. 陈果. 南京航空航天大学智能诊断与专家系统室[EB/OL]. (2020-11-30)[2020-12-04]. http://ides.nuaa.edu.cn.
[21] ANTON J. The spectral kurtosis: A useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
Outlines

/