Fluid Mechanics and Flight Mechanics

Aerodynamic design of modular configuration for multi-mission unmanned aerial vehicle

  • LI Chunpeng ,
  • ZHANG Tiejun ,
  • QIAN Zhansen ,
  • LIU Tiezhong
Expand
  • Aero Science Key Lab of High Reynolds Aerodynamic Force at High Speed, AVIC Aerodynamics Research Institute, Shenyang 110034, China

Received date: 2021-02-23

  Revised date: 2021-04-22

  Online published: 2021-04-27

Supported by

National Numerical Windtunnel Project

Abstract

The aerodynamic design of the configuration with modular components is investigated for the multi-mission Unmanned Aerial Vehicle(UAV) performing reconnaissance and strike missions. Based on the internal layout features, the aircraft major components can be divided into three types:common modules, special modules, and general modules. Various module partition methods for the forebody, wing and tail are analyzed, and the best partition methods for special and general modules are chosen according to aerodynamic characteristics. On the basis of the surrogate-based multi-objective optimization platform, module coupling optimization processes are developed in the configuration and component levels. The aerodynamic characteristics of the proposed design is assessed by a comparison with the current typical UAV configurations. The results show that the scheme of shorter length but the same volume is the optimal selection for the forebody of the strike configuration regarded as a special module, the straight wing with inflection leading edge and the sweptback trapezoidal wing are the optimal schemes respectively for the reconnaissance configuration and the strike configuration regarded as general modules, and adjustable shape and variable dihedral angle tail are the optimal scheme for the tail regarded as a general module. Module coupling optimization for general modules can effectively improve the lift-drag ratio of both the reconnaissance and strike configurations, and achieve the best aerodynamic performance of multi-mission UAV.

Cite this article

LI Chunpeng , ZHANG Tiejun , QIAN Zhansen , LIU Tiezhong . Aerodynamic design of modular configuration for multi-mission unmanned aerial vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 125411 -125411 . DOI: 10.7527/S1000-6893.2021.25411

References

[1] 马威,过海峰,姜宁.海军通用无人机及其起降方式分析[J].飞航导弹, 2006(12):37-40, 49. MA W, GUO H F, JIANG N. Analysis on the universal unmanned air vehicle of navy and its take-off/landing form[J]. Winged Missiles Journal, 2006(12):37-40, 49(in Chinese).
[2] 孙健,倪训友.无人机国内外发展态势及前沿技术动向[J].科技导报, 2017, 35(9):109. SUN J, NI X Y. Development situation at home/abroad and technology trend of unmanned aerial vehicle[J]. Science&Technology Review, 2017, 35(9):109(in Chinese).
[3] 罗利龙,王立凯,聂小华.一种面向模块化可重构机翼的分步补偿优化方法[J].北京航空航天大学学报, 2019, 45(5):930-935. LUO L L, WANG L K, NIE X H. A step-compensation optimization method for modular reconfigurable airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):930-935(in Chinese).
[4] 余雄庆,张帅.面向客机族的总体参数优化方法[J].南京航空航天大学学报, 2012, 44(5):718-724. YU X Q, ZHANG S. Optimization for conceptual design of airliner family[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2012, 44(5):718-724(in Chinese).
[5] 雍明培,余雄庆.飞机族的机翼气动外形优化方法[J].南京航空航天大学学报, 2008, 40(4):475-479. YONG M P, YU X Q. Wing aerodynamic optimization method for aircraft family design[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2008, 40(4):475-479(in Chinese).
[6] 张立丰,姚卫星,邹君.模块化飞机结构优化设计的等效多工况法[J].航空学报, 2015, 36(3):834-839. ZHANG L F, YAO W X, ZOU J. Equivalent multi-case optimization architecture for modular aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):834-839(in Chinese).
[7] 张琳,韩晓明,李彦彬.模块化、系列化防空导弹应用与发展研究[J].飞航导弹, 2014(10):29-33. ZHANG L, HAN X M, LI Y B. A research on the application and development of modular and series air defense missile[J]. Aerodynamic Missile Journal, 2014(10):29-33(in Chinese).
[8] 张纯学.美国和欧洲的模块化导弹计划[J].飞航导弹, 2006(3):6-8. ZHANG C X. Modular missile programs of the US and Europe[J]. Winged Missiles Journal, 2006(3):6-8(in Chinese).
[9] 雍明培,余雄庆.基于模块化产品平台的飞机族设计技术探讨[J].飞机设计, 2006, 26(4):30-37. YONG M P, YU X Q. Aircraft family design using modular product platform methodology-An exploratory study[J]. Aircraft Design, 2006, 26(4):30-37(in Chinese).
[10] ALLISON J, ROTH B, KOKKOLARAS M, et al. Aircraft family design using decomposition-based methods:AIAA-2006-6950[R]. Reston:AIAA, 2006.
[11] CABRAL L V, PAGLIONE P, DE MATTOS B S. Multi-objective design optimization framework for conceptual design of families of aircraft:AIAA-2006-1328[R]. Reston:AIAA, 2006.
[12] 雍明培.基于模块化通用平台策略的飞机族设计优化方法[D].南京:南京航空航天大学, 2008. YONG M P. Design optimization method for modular platform-based aircraft family[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[13] 李苏杭,李铁.飞机模块化结构平台构造优化方法[J].江苏航空, 2015, 4:9-13. LI S H, LI T. The construction and optimization method of modular aircraft structural platform[J]. Jiangsu Aviation, 2015, 4:9-13(in Chinese).
[14] 石荣荣,杨成博,丛佩玺,等.模块化技术在飞机EWIS研制中的应用[J].飞机设计, 2020, 40(5):57-61. SHI R R, YANG C B, CONG P X, et al. Application of modularization technology in aircraft EWIS development[J]. Aircraft Design, 2020, 40(5):57-61(in Chinese).
[15] 周皓宇.飞翼布局无人机族总体参数优化方法[D].南京:南京航空航天大学, 2019. ZHOU H Y. Optimization method for conceptual design of flying wing UAV family[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
[16] 岳志星.飞翼布局无人机族结构初步设计与优化[D].南京:南京航空航天大学, 2019. YUE Z X. Preliminary design and optimization of UAV family structure with flying wing layout[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
[17] PATTERSON M, PATE D, GERMAN B. Performance flexibility of a reconfigurable family of UAVs:AIAA-2011-6851[R]. Reston:AIAA, 2011.
[18] PATE D J, PATTERSON M D, GERMAN B J. Optimizing families of reconfigurable aircraft for multiple missions[J]. Journal of Aircraft, 2012, 49(6):1988-2000.
[19] SCHMITT V, CHARPIN F. Pressure distributions on the ONERA-M6-wing at transonic Mach numbers:AGARD AR-138[R]. Paris:AGARD, 1979.
[20] 刘怡彪,薛珂,王春科.国外无人机发展趋势研究[J].工程与试验, 2020, 60(3):41-42, 64. LIU Y B, XUE K, WANG C K. Research on the development trend of foreign UAV[J]. Engineering&Test, 2020, 60(3):41-42, 64(in Chinese).
[21] 贾高伟,郭正.美军XQ-58A项目与应用模式分析[J].国防科技, 2021, 42(1):1-6. JIA G W, GUO Z. Analysis of the XQ-58A project of the US military and its modes of application[J]. National Defense Technology, 2021, 42(1):1-6(in Chinese).
[22] 魏闯,杨龙,李春鹏,等. ARI_OPT气动优化软件研究进展及应用[J].航空学报, 2020, 41(5):623370. WEI C, YANG L, LI C P, et al. Research progress and application of ARI_OPT software for aerodynamic shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623370(in Chinese).
[23] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J].航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese).
[24] 李春鹏,张铁军,钱战森.基于代理模型的自适应后缘翼型气动优化设计[J].航空科学技术, 2019, 30(11):41-47. LI C P, ZHANG T J, QIAN Z S. Aerodynamic optimization design of the airfoil with adaptive trailing edge based on surrogate model[J]. Aeronautical Science&Technology, 2019, 30(11):41-47(in Chinese).
Outlines

/