Large angle attitude maneuver is a common task in current space missions. However, the complex space environment and spacecraft attitude constraints limit the feasible space of attitude maneuver and the efficiency of attitude planning. To solve this problem, this paper studies the rapid planning of large angle attitude maneuver based on multiple constraints, and proposes a rapid planning method based on path transfer strategy. The method is composed of three parts:reference path planning, relaxation path planning, and path transfer planning. The problems of initial reference path generation, attitude bounded constraint satisfaction and attitude pointing constraint satisfaction in attitude planning are dealt with step by step. In path transfer planning, the attitude pointing constraint evaluation function is established based on the pointing angle and the corresponding transfer action set is designed, which can quickly obtain the safe maneuver path satisfying various constraint conditions. Simulation of large angle attitude maneuver shows that the method proposed is fast in terms of maneuver time and efficient in terms of planning speed.
[1] KAWAJIRI S, MATUNAGA S. A low-complexity attitude control method for large-angle agile maneuvers of a spacecraft with control moment gyros[J]. Acta Astronautica, 2017, 139:486-493.
[2] WU Y H, HAN F, HUA B, et al. Null motion strategy for spacecraft large angle agile maneuvering using hybrid actuators[J]. Acta Astronautica, 2017, 140:459-468.
[3] 王立, 孙秀清, 张春明, 等. 一种全天时星跟踪器相对惯导的安装阵在线快速估计方法[J]. 航空学报, 2020, 41(8):624117. WANGL, SUN X Q, ZHANG C M, et al. Fast online estimation method for installing matrix between all-time star tracker and inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):624117(in Chinese).
[4] WANG Z, XU R, ZHU S Y, et al. Integration planning of gimbal angle and attitude motion for zero propellant maneuver under attitude and control moment gyroscope constraints[J]. Acta Astronautica, 2020, 172:123-133.
[5] WU C Q, XU R, ZHU S Y, et al. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[J]. Acta Astronautica, 2017, 137:128-137.
[6] WALLSGROVE R J, AKELLA M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):957-963.
[7] 夏冬冬, 岳晓奎. 基于浸入与不变理论的航天器姿态跟踪自适应控制[J]. 航空学报, 2020, 41(2):323428. XIAD D, YUE X K. Immersion and invariance based attitude adaptive tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323428(in Chinese).
[8] 郭延宁, 李传江, 马广富. 基于势函数法的航天器自主姿态机动控制[J]. 航空学报, 2011, 32(3):457-464. GUO Y N, LI C J, MA G F. Spacecraft autonomous attitude maneuver controlby potential function method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):457-464(in Chinese).
[9] 武长青, 徐瑞, 朱圣英, 等. 非凸二次约束下航天器姿态机动路径迭代规划方法[J]. 宇航学报, 2016, 37(6):671-678. WU C Q, XU R, ZHU S Y, et al. Spacecraft attitude maneuver path iterative planning method under nonconvex quadratic constraints[J]. Journal of Astronautics, 2016, 37(6):671-678(in Chinese).
[10] 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划[J]. 航空学报, 2007, 28(5):1091-1097. ZHONG W G, CUI P Y, CUI H T. Autonomousattitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1091-1097(in Chinese).
[11] KJELLBERG H C, LIGHTSEY E G. Discretized constrained attitude pathfinding and control for satellites[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1301-1309.
[12] MCLNNES C R. Large angle slew maneuvers with autonomous Sun vector avoidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877.
[13] 程小军, 崔祜涛, 崔平远, 等. 具有非凸约束的航天器姿态机动预测控制[J]. 宇航学报, 2011, 32(5):1070-1076. CHENG X J, CUI H T, CUI P Y, et al. A predictive control algorithm for spacecraft attitude maneuver with nonconvex geometric constraint[J]. Journal of Astronautics, 2011, 32(5):1070-1076(in Chinese).
[14] SPILLER D, ANSALONE L, CURTI F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):312-325.
[15] SPILLER D, MELTON R G, CURTI F. Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels[J]. Aerospace Science and Technology, 2018, 75:1-12.
[16] HABLANI H B. Attitude commands avoiding bright objects and maintaining communication with ground station[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):759-767.
[17] KUFFNER J J, LAVALLE S M. RRT-connect:An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.No.00CH37065). Piscataway:IEEE Press, 2000:995-1001.
[18] FRAZZOLI E, DAHLEH M A, FERON E. Real-time motion planning for agile autonomous vehicles[C]//Proceedings of the 2001 American Control Conference. (Cat.No.01CH37148). Piscataway:IEEE Press, 2001:43-49.
[19] XU R, WANG H, XU W M, et al. Rotational-path decomposition based recursive planning for spacecraft attitude reorientation[J]. Acta Astronautica, 2018, 143:212-220.
[20] XU R, WU C Q, ZHU S Y, et al. A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space[J]. Information Systems Frontiers, 2017, 19(4):945-953.
[21] SCHLANBUSCH R, KRISTIANSEN R, NICKLASSON P J. On choosing quaternion equilibrium point in attitude stabilization[C]//2010 IEEE Aerospace Conference. Piscataway:IEEE Press, 2010:1-6.