Fluid Mechanics and Flight Mechanics

Experiment on influence of leading-edge shape on aerodynamic characteristics of cavity model

  • LIU Jun ,
  • LUO Xinfu ,
  • WANG Xiansheng
Expand
  • 1. School of Aeronautics, Northnestern Polytechnical University, Xi'an 710072, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-01-08

  Revised date: 2021-04-22

  Online published: 2021-04-27

Supported by

(]National Natrud Science Foundation of China (11602287)

Abstract

Compared with the cavity model installed into the side wall of the wind tunnel, the cavity model located in the core-flow of the wind-tunnel has obvious advantages in simulating the thickness of the boundary layer. However, the core-flow cavity model suffers from the problems that the thickness of the approaching boundary layer is significantly higher than the theoretical estimate and the sound pressure level in the cavity is significantly lower than the numerical result, which seriously affects the accuracy of the test results. In the present study, effects of leading-edge shapes on cavity flow tests at the subsonic and supersonic speeds are comprehensively evaluated, using the technologies including boundary layer measurement, pressure fluctuation measurement and surface fluorescent oil flow. The C201 cavity model is investigated, whose leading-edge shape can be changed during the tests. The test results show that at the subsonic speed, the elliptical leading-edge helps to eliminate flow separation. The obtained approaching boundary layer thickness and sound pressure level distribution in the cavity is consistent with the calculated results. At the supersonic speed, the leading-edge of the small-angle wedge shape helps to avoid formation of detached shock waves. The research results could provide guidance for the design of cavity model shape, so that the adverse effects of leading-edge flow separations and detached shock waves on cavity flow tests can be avoided.

Cite this article

LIU Jun , LUO Xinfu , WANG Xiansheng . Experiment on influence of leading-edge shape on aerodynamic characteristics of cavity model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 125235 -125235 . DOI: 10.7527/S1000-6893.2021.25235

References

[1] LEE B H K. Effect of captive stores on internal weapons bay floor pressure distributions[J]. Journal of Aircraft, 2010, 47(2):732-736.
[2] 刘俊,蔡晋生,杨党国,等.超声速空腔流动波系演化及噪声控制研究进展[J].航空学报, 2018, 39(11):022366. LIU J, CAI J S, YANG D G, et al. Research progress in wave evolution and noise control for supersonic cavity flows[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):022366(in Chinese).
[3] ZILBERTER I A, EDWARDS J R, WITTICH D J. Numerical simulation of aero-optical effects in a supersonic cavity flow[J]. AIAA Journal, 2017, 55(9):3095-3108.
[4] 贾真.超声速燃烧室中壁面凹腔结构的稳焰机理[J].航空动力学报, 2013, 28(6):1392-1401. JIA Z. Flame-holding mechanism of cavity structure in super-sonic combustor[J]. Journal of Aerospace Power, 2013, 28(6):1392-1401(in Chinese).
[5] ZHUANG N. Experimental investigation of supersonic cavityflows and their control[D]. Tallahassee:Florida State Uni-versity, 2007:15-145.
[6] ZHANG X, RONA A, EDWARDS J A. An observation of pressure waves around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4):771-778.
[7] HELLER H, DELFS J. Cavity pressure oscillations:the generating mechanism visualized[J]. Journal of Sound and Vibration, 1996, 196(2):248-252.
[8] WANG H B, SUN M B, QIN N, et al. Characteristics of oscillations in supersonic open cavity flows[J]. Flow, Turbulence and Combustion, 2013, 90(1):121-142.
[9] LI W P, NONOMURA T, FUJII K. On the feedback mechanism in supersonic cavity flows[J]. Physics of Fluids, 2013, 25(5):056101.
[10] ROKITA T, ELIMELECH Y, ARIELI R, et al. Experimental characterization of turbulent subsonic transitional-open cavity flow[J]. Experiments in Fluids, 2016, 57(4):1-16.
[11] SCHMIT R F, GROVE J E, SEMMELMAYER F, et al. Nonlinear feedback mechanisms inside a rectangular cavity[J]. AIAA Journal, 2014, 52(10):2127-2142.
[12] 杨党国,罗新福,李建强,等.来流边界层厚度对开式空腔气动声学特性的影响分析[J].空气动力学学报, 2011, 29(4):486-490. YANG D G, LUO X F, LI J Q, et al. Analysis ofaeroacoustic characteristics in open cavities influenced by boundary-layer thickness[J]. Acta Aerodynamica Sinica, 2011, 29(4):486-490(in Chinese).
[13] HENSHAW M J. M219 Cavity Case:ADP010729[R]. East Riding of Yorkshire:British Aerospace Ltd, 2000.
[14] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modelling:Results of the European-union funded project, 2004-2007[M]. Berlin, Heidelberg:Springer, 2009:105-308.
[15] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216.
[16] DELFS J. DLR Cavity Pressure Oscillations, Experimental:ADP010730[R]. Braunschweig:DLR German Aerospace Center, 2000.
[17] SCHMIT R, MCGAHA C, TEKELL J, et al. Performanceresults for the optical turbulence reduction cavity:AIAA-2009-0702[R]. Reston:AIAA, 2009.
[18] RADHAKRISHNAN S. An experimental and numerical study of open cavity flows[D].Knoxville:The University of Tennessee, 2002:34.
[19] 赵小见,赵磊,冯峰,等.某空腔低速流动噪声风洞试验[J].航空学报, 2015, 36(7):2145-2154. ZHAO X J, ZHAO L, FENG F, et al. Wind tunnel test into noise induced by low-speed cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2145-2154(in Chinese).
[20] 宋文成,李玉军,冯强.武器舱气动噪声主动流动控制技术风洞试验研究[J].空气动力学学报, 2016, 34(1):33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1):33-39(in Chinese).
[21] 刘俊,蔡晋生,周方奇.空腔噪声的马赫数敏感性研究[J].实验流体力学, 2020, 34(3):104-110. LIU J, CAI J S, ZHOU F Q. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3):104-110(in Chinese).
[22] 周方奇,杨党国,王显圣,等.前缘直板扰流对高速空腔的降噪效果分析[J].航空学报, 2018, 39(4):121812. ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121812(in Chinese).
[23] 杨党国,刘俊,王显圣,等.典型构型空腔模型设计与流动/噪声特性研究[J].空气动力学学报, 2018, 36(3):432-439, 448. YANG D G, LIU J, WANG X S, et al. Analysis of design method and aeroacoustics characteristics inside typical cavity[J]. Acta Aerodynamica Sinica, 2018, 36(3):432-439, 448(in Chinese).
[24] 姜薇婉.空腔复杂湍流结构数值模拟与流动机理分析[D].西安:西北工业大学, 2016:41. JIANG W W. Numerical simulation and flow mechanism analysis of complex turbulent structure in cavity flows[D]. Xi'an:Northwestern Polytechnical University, 2016:41(in Chinese).
[25] 刘俊,杨党国,王显圣,等.湍流边界层厚度对三维空腔流动的影响[J].航空学报, 2016, 37(2):475-483. LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):475-483(in Chinese).
[26] ANDERSON J D. Fundamentals of aerodynamics[M]. 5th ed. New York:McGraw-Hill Education, 2010:612.
Outlines

/