Review

Review of spacecraft entry guidance method

  • HU Jun ,
  • LI Maomao
Expand
  • 1. Beijing Institute of Control Engineering, Beijing 100190, China;
    2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100190, China

Received date: 2020-12-02

  Revised date: 2021-01-06

  Online published: 2021-04-27

Abstract

The design of guidance system is essential for safe reentry or landing of the spacecraft at the specified region. In this paper, the spacecraft entry models are first summarized. Then, the establishment and difficulty of entry guidance are analyzed, and the research status of spacecraft entry guidance methods is reviewed. The advantages and disadvantages of various entry guidance methods are analyzed. The adaptive predictor-corrector guidance method which has been applied to reentry of China's spacecraft is introduced, which can be used as a general guidance method. Facing the urgent problems needed to be solved for the future development, the importance of fast online feasible trajectories planning is highlighted. The problems needed to be solved for online trajectory planning are analyzed, and possible development directions of spacecraft entry guidance method are also given.

Cite this article

HU Jun , LI Maomao . Review of spacecraft entry guidance method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(11) : 525048 -525048 . DOI: 10.7527/S1000-6893.2021.25048

References

[1] 赵汉元. 飞行器再入动力学和制导[M]. 长沙:国防科技大学出版社, 1997:11-17. ZHAO H Y. Aircraft reentry dynamics and guidance[M]. Changsha:National University of Defense Technology Press, 1997:11-17(in Chinese).
[2] 王大轶, 郭敏文. 航天器大气进入过程制导方法综述[J]. 宇航学报, 2015, 36(1):1-8. WANG D Y, GUO M W. Review of spacecraft entry guidance[J]. Journal of Astronautics, 2015, 36(1):1-8(in Chinese).
[3] 田栢苓, 李智禹, 吴思元, 等. 可重复使用运载器再入轨迹与制导控制方法综述[J]. 航空学报, 2020, 41(11):624072. TIAN B L, LI Z Y, WU S Y, et al. Reentry trajectory optimization, guidance and control methods for reusable launch vehicles:Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):624072(in Chinese).
[4] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese).
[5] 穆凌霞, 王新民, 谢蓉, 等. 高超音速飞行器及其制导控制技术综述[J]. 哈尔滨工业大学学报, 2019, 51(3):1-14. MU L X, WANG X M, XIE R, et al. A survey of the hypersonic flight vehicle and its guidance and control technology[J]. Journal of Harbin Institute of Technology, 2019, 51(3):1-14(in Chinese).
[6] LI S, JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57.
[7] 李毛毛. 飞行器进入与返回自适应制导方法研究[D].北京:中国空间技术研究院,2018:122-124. LI MM. The study on adaptive guidance methods of aerocraft entry and return[D]. Beijing:Chinese Academy of Space Technology,2018:122-124(in Chinese).
[8] 胡军. 自适应预测制导:一种统一的制导方法[J]. 空间控制技术与应用, 2019, 45(4):53-63. HU J. Adaptive predictive guidance:A unified guidance method[J]. Aerospace Control and Application, 2019, 45(4):53-63(in Chinese).
[9] 王希季. 航天器进入与返回技术-上册[M]. 北京:宇航出版社, 1991:20-30. WANG X J. Spacecraft entry and return technology[M].Beijing:Astronautic Press, 1991:20-30(in Chinese).
[10] KRANZUSCH K M. Abort determination with non-adaptive neural networks for the Mars precision landers[J]. Acta Astronautica, 2008, 62(1):79-90.
[11] 杨俊春, 倪茂林, 胡军. 基于强跟踪滤波器的再入飞行器制导律设计[J]. 系统仿真学报, 2007, 19(11):2535-2538. YANG J C, NI M L, HU J. Design of entry guidance based on strong tracking filter for reentry spacecraft[J]. Journal of SystemSimulation, 2007, 19(11):2535-2538(in Chinese).
[12] WINGROVE R C. Survey of atmosphere re-entry guidance and control methods[J]. AIAA Journal, 1963,1(9):2019-2029.
[13] ROENNEKE A J, CORNWELL P J. Trajectory control for a low-lift re-entry vehicle[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):927-933.
[14] ROENNEKE A, WELL K. Nonlinear drag-tracking control applied to optimal low-liftreentry guidance[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1996.
[15] LU P. Nonlinear trajectory tracking guidance with application to a launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1):99-106.
[16] LU P. Regulation about time-varying trajectories:precision entry guidance illustrated[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):784-790.
[17] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[18] TALOLE S, BENITO J, MEASE K. Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007.
[19] RESTREPO C, VALASEK J. Structured adaptive model inversion controller for Mars atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):937-953.
[20] 杜昕, 刘会龙, 黄悦琛. 探月返回跳跃式再入标称轨迹制导律[J]. 载人航天, 2016, 22(6):766-773. DU X, LIU H L, HUANG Y C. Skip entry guidance using a reference trajectory for lunar module[J]. Manned Spaceflight, 2016, 22(6):766-773(in Chinese).
[21] 李昭莹, 张冉, 李惠峰. RLV轨迹在线重构与动态逆控制跟踪[J]. 宇航学报, 2015, 36(2):196-202. LI Z Y, ZHANG R, LI H F. On-board trajectory reconfiguration and dynamic inverse tracking control for RLV[J]. Journal of Astronautics, 2015, 36(2):196-202(in Chinese).
[22] ZHU J W, ZHANG S X. Adaptive optimal gliding guidance independent of QEGC[J]. Aerospace Science and Technology, 2017, 71:373-381.
[23] YAN H, WANG X H, HE Y Z, et al. Reduced-order observer-based robust drag-tracking guidance for uncertain entry vehicles[J]. International Journal of Robust and Nonlinear Control, 2020, 30(13):4906-4923.
[24] 沈作军, 朱国栋. 基于轨迹线性化控制的再入轨迹跟踪制导[J]. 北京航空航天大学学报, 2015, 41(11):1975-1982. SHEN Z J, ZHU G D. Trajectory linearization control based tracking guidance design for entry flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1975-1982(in Chinese).
[25] ROENNEKE A. Adaptive on-board guidance for entryvehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001.
[26] SHEN Z J, LU P.Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[27] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[28] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481.
[29] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3):579-587. LI J, JIANG Z Y. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3):579-587(in Chinese).
[30] 呼卫军, 周军, 常晶, 等. RLV应急再入轨迹规划问题的动态伪谱法求解[J]. 宇航学报, 2015, 36(11):1255-1261. HU W J, ZHOU J, CHANG J, et al. Emergency reentry trajectory planning for reusable launch vehicle based on dynamic gauss pseudo-spectral[J]. Journal of Astronautics, 2015, 36(11):1255-1261(in Chinese).
[31] 卢宝刚, 傅瑜, 崔乃刚, 等. 基于拟平衡滑翔的数值预测再入轨迹规划算法[J]. 哈尔滨工业大学学报, 2015, 47(1):14-19. LU B G, FU Y, CUI N G, et al. Numerical prediction method of reentry trajectory planning based on quasi equilibrium glide condition[J]. Journal of Harbin Institute of Technology, 2015, 47(1):14-19(in Chinese).
[32] SAGLIANO M, MOOIJ E, THEIL S. Onboard trajectory generation for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):466-476.
[33] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):227-241.
[34] YEO B P, SNG K B. Numerical solution of the constrained reentry vehicle trajectory problem via quasilinearization[J]. Journal of Guidance and Control, 1980, 3(5):392-397.
[35] PAN L, PENG S C, XIE Y, et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167:42-51.
[36] LI MM, HU J, HUANG H. A segmented and weighted adaptive predictor-corrector guidance method for the ascent phase of hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 106:106231.
[37] CHAMAN P W, MOONAN P J. Analysis and evaluation of a proposed method for inertial reentry guidance of a deep space vehicle[C]//Proceedings of the IRE National Aerospace Electronics Conference, 1962.
[38] 胡军, 张钊. 载人登月飞行器高速返回再入制导技术研究[J]. 控制理论与应用, 2014, 31(12):1678-1685. HU J, ZHANG Z. A study on the reentry guidance for a manned lunar return vehicle[J]. Control Theory & Applications, 2014, 31(12):1678-1685(in Chinese).
[39] 胡军. 载人飞船全系数自适应再入升力控制[J]. 宇航学报, 1998, 19(1):8-12. HU J. All coefficients adaptive reentry lifting control of manned spacecraft[J]. Journal of Astronautics, 1998, 19(1):8-12(in Chinese).
[40] 吴宏鑫, 胡军, 解永春. 基于特征模型的智能自适应控制[M]. 合肥:中国科学技术出版社, 2009:1-10. WU H X, HU J, XIE Y C. Characteristic model-based intelligent adaptive control[M]. Beijing:China Science and Technology Press, 2009:1-10(in Chinese).
[41] 郭敏文. 小升阻比航天器进入制导方法研究[D]. 北京:中国空间技术研究院, 2014:78-90. GUO M W. On entry guidance algorithm for spacecrafts with low lift-to-drag ratios[D]. Beijing:Chinese Academy of Space Technology,2014:78-90(in Chinese).
[42] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[43] POWELL R W. Six-degree-of-freedom guidance and control-entry analysis of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5):537-542.
[44] POWELL R. Numericalroll reversal predictor corrector aerocapture and precision landing guidance algorithms for the Mars Surveyor Program 2001 missions[C]//23rd Atmospheric Flight Mechanics Conference. Reston:AIAA, 1998:4574.
[45] FUHRY D. Adaptive atmospheric reentry guidance for the Kistler K-1 orbital vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1999.
[46] CHOWDHRY R, ZIMMERMANN C, YOUSSEF H, et al. Predictor-corrector entry guidance for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001.
[47] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[48] BRUNNER C W, LU P. Skip entry trajectory planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1210-1219.
[49] 水尊师, 周军, 葛致磊. 基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J]. 宇航学报, 2011, 32(6):1249-1255. SHUI Z S, ZHOU J, GE Z L. On-line predictor-corrector reentry guidance law based ongauss pseudospectral method[J]. Journal of Astronautics, 2011, 32(6):1249-1255(in Chinese).
[50] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[51] 张洪波, 曾亮. 一种跳跃式返回再入的预测-校正制导方法[J]. 飞行器测控学报, 2014, 33(1):82-87. ZHANG H B, ZENG L. A predictor-corrector guidance method for skip reentry missions[J]. Journal of Spacecraft TT&C Technology, 2014, 33(1):82-87(in Chinese).
[52] 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学(技术科学), 2015, 45(3):229-238. YE P J, YANG M F, PENG J,et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. SCIENTIA SINICA Technologica, 2015, 45(3):229-238(in Chinese).
[53] ZHANG Z, HU J. Prediction-based guidance algorithm for high-lift reentry vehicles[J]. Science China Information Sciences, 2011, 54(3):498-510.
[54] WANG T, ZHANG H B, ZENG L, et al. A robust predictor-corrector entry guidance[J]. Aerospace Science and Technology, 2017, 66:103-111.
[55] 吴宏鑫, 胡军. 特征建模理论、方法和应用[M]. 北京:国防工业出版社, 2019:302-335. WU H X, HU J. Theory, methods and applications of characteristic modeling[M]. Beijing:National Defense Industry Press, 2019:302-335(in Chinese).
[56] 胡军, 陈祖贵, 刘良栋, 等. 神舟飞船制导、导航与控制分系统研制与飞行结果评价[J]. 航天器工程, 2004, 13(1):24-29. HU J, CHEN Z G, LIU L D,et al. Development of guidance, navigation and control system of Shenzhou spacecraft and evaluation of flight results[J]. Spacecraft Engineering, 2004, 13(1):24-29(in Chinese).
[57] 杨鸣,张钊,董文强.CE-5T1返回器GNC分系统正样方案设计报告[R].北京:北京控制工程研究所,2014. YANG M, ZHANG Z, DONG W Q. TheGNC sub-system design report for CE-5T1 returner of flight model[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese).
[58] 胡军.基于预测的全系数自校正采用一阶特征模型的论证[R].北京:北京控制工程研究所,2014. HU J. The argumentation for the all coefficients adaptive corrector with first-order characteristic model[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese).
[59] 胡军, 吴宏鑫, 杨鸣, 等. 一种基于一阶特征模型的全系数自适应控制方法:CN104570734B[P]. 2015-04-29. HU J, WU H X, YANG M, et al.All-coefficient adaptive control method based on one-order characteristic model:CN104570734B[P]. 2015-04-29(in Chinese).
[60] 杨鸣,董文强,胡军.自适应预测校正方法在高速再入制导中的应用[R].北京:北京控制工程研究所,2016. YANG M, DONG W Q, HU J. The application of adaptive predictor-corrector method on the high-speed reentry guidance[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese).
[61] 杨鸣,董文强,乔德治.基于预测校正方法的跳跃式再入制导技术[R].北京:北京控制工程研究所,2015. YANG M, DONG W Q, QIAO D Z. The skip reentry guidance based on predictor-corrector method[R]. Beijing:Beijing Institute of Control Engineering, 2015(in Chinese).
[62] 董文强,郑永洁,汤章阳.探月工程三期返回再入飞行试验器GNC分系统飞行任务总结报告[R].北京:北京控制工程研究所,2014. DONG W Q, ZHENG Y J, TANG Z Y. The summary report on the flight missions of the GNC sub-system of the return and reentry flight tester for the third phase of the lunar exploration project[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese).
[63] 张昊,董文强.XXXX-GNC分系统船载计算机GNCC正样应用软件用户需求[R].北京:北京控制工程研究所,2018. ZHANG H, DONG W Q. TheGNCC application software user requirements for the XXXX-GNC sub-system computer[R]. Beijing:Beijing Institute of Control Engineering, 2018(in Chinese).
[64] 董文强.YYYY-GNC分系统GNCC应用软件用户需求[R].北京:北京控制工程研究所,2018. DONG W Q. The GNCC application software user requirements for the YYYY-GNC sub-system[R]. Beijing:Beijing Institute of Control Engineering, 2018(in Chinese).
[65] 李毛毛, 胡军. 火星进入段自适应预测校正制导方法[J]. 宇航学报, 2017, 38(5):506-515. LI MM, HU J. An adaptive predictor-corrector method of Mars entry phase[J]. Journal of Astronautics, 2017, 38(5):506-515(in Chinese).
[66] 胡军. 载人飞船的一种混合再入制导方法[J]. 航天控制, 1999,17(2):19-24. HU J. A kind of mixed reentry guidance method for manned spacecraft[J]. Aerospace Control, 1999,17(2):19-24(in Chinese).
[67] DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[68] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572.
[69] LIANG Z X, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):996-1005.
[70] 高杨, 蔡光斌, 张胜修, 等. 多禁飞区高超声速滑翔飞行器再入机动制导[J]. 兵器装备工程学报, 2019, 40(8):32-39. GAO Y, CAI G B, ZHANG S X, et al. Reentry maneuver guidance for hypersonic glide vehicles under multiple no-fly zones[J]. Journal of Ordnance Equipment Engineering, 2019, 40(8):32-39(in Chinese).
[71] HE R Z, LIU L H, TANG G J, et al. Entry trajectory generation without reversal of bank angle[J]. Aerospace Science and Technology, 2017, 71:627-635.
[72] 王青, 莫华东, 吴振东, 等. 考虑禁飞圆的高超声速飞行器再入预测制导[J]. 哈尔滨工业大学学报, 2015, 47(2):104-109. WANG Q, MO H D, WU Z D, et al. Predictive reentry guidance for hypersonic vehicles considering no-fly zone[J]. Journal of Harbin Institute of Technology, 2015, 47(2):104-109(in Chinese).
[73] LI M M, HU J. An approach and landing guidance design for reusable launch vehicle based on adaptive predictor-corrector technique[J]. Aerospace Science and Technology, 2018, 75:13-23.
[74] 胡军, 张钊. 数值预测校正制导方法用于大升阻比再入航天器的研究[C]//武汉:中国自动化大会,2015. HU J, ZHANG Z. The study of numerical predictor-corrector guidance method used in the reentry spacecraft with large lift-drag ratio[C]//Wuhan:China Automation Conference, 2015(in Chinese).
[75] 唐青原. 火星气动捕获的自主轨道确定与控制[D]. 北京:中国空间技术研究院, 2019:20-60. TANG Q Y.Autonomous orbit determination and control of Mars aerodynamic capture[D]. Beijing:Chinese Academy of Space Technology,2019:20-60(in Chinese).
Outlines

/