MUSCL and WENO schemes problems generated by dimension splitting approach

  • LIU Jun ,
  • HAN Fang ,
  • WEI Yanxin
Expand
  • School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2020-11-26

  Revised date: 2021-01-14

  Online published: 2021-04-27

Supported by

National Numerical Wind Tunnel Project (NNW2018-ZT4B09);National Natural Science Foundation of China (11872144)

Abstract

This paper first discuss the difference between finite difference method and finite volume method, subsequently supplementing new arguments for the existence of differences in the boundary condition treatment and grid requirements between these two methods based on the existing literature.The calculation process of the interface flux of the control volume by dimension-by-dimension derived MUSCL and WENO schemes is further introduced.Since the direct application of these schemes to the Gaussian integral finite volume method is considered not rigorous enough, it is concluded that the MUSCL scheme and WENO scheme constructed by the dimension splitting method do not belong to the Gaussian integral finite volume method, while the definition of "integral scheme" can more accurately reflect the characteristics of these schemes.In addition, the reasons for the inability of the MUSCL and WENO schemes to guarantee conservation in the curvilinear coordinate system are discussed, and the elimination methods briefly introduced.Finally, research results obtained according to the viewpoint of this paper are briefly presented.

Cite this article

LIU Jun , HAN Fang , WEI Yanxin . MUSCL and WENO schemes problems generated by dimension splitting approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 125009 -125009 . DOI: 10.7527/S1000-6893.2021.25009

References

[1] 陈坚强, 袁先旭, 涂国华, 等.高超声速边界层转捩的几点认识[J].中国科学(物理学力学天文学), 2019, 49(11):121-134. CHEN J Q, YUAN X X, TU G H, et al.Recent progresses on hypersonic boundary-layer transition[J].Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(11):121-134(in Chinese).
[2] 刘君, 邹东阳, 徐春光.基于非结构动网格的非定常激波装配法[J].空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G.An unsteady shock-fitting technique based on unstructured moving grids[J].Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese).
[3] JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228.
[4] 刘君, 韩芳.有关有限差分高精度格式两个应用问题的讨论[J].空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F.Discussions on two problems in applications of high-order finite difference schemes[J].Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese).
[5] 刘君, 魏雁昕, 韩芳.有限差分法的坐标变换诱导误差[J].航空学报, 2021, 42(6):124397. LIU J, WEI Y X, HAN F.Coordinate transformation induced errors of finite difference method[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124397(in Chinese).
[6] ZHU Y J, SUN Z S, REN Y X, et al.A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J].Journal of Scientific Computing, 2017, 72(3):1021-1048.
[7] 朱志斌, 杨武兵, 禹旻.满足几何守恒律的WENO格式及其应用[J].计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M.A WENO scheme with geometric conservation law and its application[J].Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese).
[8] 刘君, 韩芳, 夏冰.有限差分法中几何守恒律的机理及算法[J].空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B.Mechanism and algorithm for geometric conservation law in finite difference method[J].Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese).
[9] 刘君, 韩芳.有限差分法中的贴体坐标变换[J].气体物理, 2018, 3(5):18-29. LIU J, HAN F.Body-fitted coordinate transformation for finite difference method[J].Physics of Gases, 2018, 3(5):18-29(in Chinese).
[10] THOMAS P, LOMBARD C.The Geometric Conservation Law-A link between finite-difference and finite-volume methods of flow computation on moving grids[C]//11th Fluid and PlasmaDynamics Conference.Reston:AIAA, 1978.
[11] THOMAS P D, LOMBARD C K.Geometric conservation law and its application to flow computations on moving grids[J].AIAA Journal, 1979, 17(10):1030-1037.
[12] 刘巍, 张理论, 王勇献.计算空气动力学并行编程基础[M].北京:国防工业出版社, 2013. LIU W, ZHANG L L, WANG Y X.Foundations of computational aerodynamics parallel programming[M].Beijing:National Defense Industry Press, 2013(in Chinese).
[13] 吴子牛.计算流体力学基本原理[M].北京:科学出版社, 2001. WU Z N.Computational fluid dynamics[M].Beijing:Science Press, 2001(in Chinese).
[14] VINOKUR M.An analysis of finite-difference and finite-volume formulations of conservation laws[J].Journal of Computational Physics, 1989, 81(1):1-52.
[15] 张德良.计算流体力学教程[M].北京:高等教育出版社, 2010. ZHANG D L.A course in computational fluid dynamics[M].Beijing:Higher Education Press, 2010(in Chinese).
[16] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006. YAN C.计算流体力学方法及应用[M].Beijing:Beihang University Press, 2006(in Chinese).
[17] VAN LEER B.Towards the ultimate conservative difference scheme.V.A second-order sequel to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136.
[18] ROE P L.The use of the Riemann problem in finite difference schemes[C]//Seventh International Conference on Numerical Methods in Fluid Dynamics, 1981.
[19] ROE P.My way:a computational autobiography[J].Communications on Applied Mathematics and Computation, 2020, 2(3):321-340.
[20] FRIEDRICH O.Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J].Journal of Computational Physics, 1998, 144(1):194-212.
[21] HU C Q, SHU C W.Weighted essentially non-oscillatory schemes on triangular meshes[J].Journal of Computational Physics, 1999, 150(1):97-127.
[22] ALHAWWARY M, WANG Z J.Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws[J].Journal of Computational Physics, 2018, 373:835-862.
[23] 徐文灿, 胡俊.计算流体力学[M].北京:北京理工大学出版社, 2011. XU W C, HU J.Computational fluid dynamics[M].Beijing:Beijing Insititute of Technology Press, 2011(in Chinese).
[24] DENG X G, MIN Y B, MAO M L, et al.Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics, 2013, 239:90-111.
[25] 刘君, 陈洁, 韩芳.基于离散等价方程的非结构网格有限差分法[J].航空学报, 2020, 41(1):123248. LIU J, CHEN J, HAN F.Finite difference method for unstructured grid based on discrete equivalent equation[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese).
[26] 刘君, 魏雁昕, 陈洁.基于非结构网格有限差分法的扎染算法[J].航空学报, 2021, 42(7):124557. LIU J, WEI Y X, CHEN J.Tie-dye algorithm based on finite difference method for unstructured grid[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124557(in Chinese).
[27] CHEN Z D, ZHANG F, LIU J, et al.An iterative near-boundary reconstruction strategy for unstructured finite volume method[J].Journal of Computational Physics, 2020, 418:109621.
Outlines

/