Electronics and Electrical Engineering and Control

Imaging posture and coverage of Chang'e 5 surface sampling manipulator cameras

  • ZHENG Yanhong ,
  • DENG Xiangjin ,
  • JIN Shengyi ,
  • CHEN Liping ,
  • YAO Meng ,
  • ZHAO Zhihui
Expand
  • Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Received date: 2021-02-06

  Revised date: 2021-04-09

  Online published: 2021-04-27

Supported by

China's Lunar Exploration Project

Abstract

The Chang'e 5 explorer successfully realized China's first lunar sample-return mission. Lots of images were acquired by the cameras mounted on the surface sampling manipulator in the process of lunar surface exploration. The inverse kinematics of the 4 degrees of freedom manipulator of Chang'e 5 was discussed with the geometric method. The imaging posture determination approach for the two types of monocular motion cameras mounted on the manipulator——far camera and near camera was proposed. For the sampling area, the coverage of the field of view under different imaging posture was analyzed. Furthermore, the principle of multi-image overlapping evaluation without image was established. Then the imaging posture and image coverage were simulated based on the manipulator camera motion information, and the simulation results were verified through terrain reconstruction. The results indicate that the approach can be used to establish the overlapping connection of multi-images acquired by the manipulator camera in widespread motion, and can be used in multi-image joint applications such as topographic reconstruction with the help of imaging posture.

Cite this article

ZHENG Yanhong , DENG Xiangjin , JIN Shengyi , CHEN Liping , YAO Meng , ZHAO Zhihui . Imaging posture and coverage of Chang'e 5 surface sampling manipulator cameras[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 325388 -325388 . DOI: 10.7527/S1000-6893.2021.25388

References

[1] WILHELMS D E. To a rocky moon:A geologist's history of lunar exploration[J]. Choice Reviews Online, 1993, 31(1):31-287.
[2] 郑燕红,邓湘金,庞勇,等.月球风化层钻取采样过程密实度分类研究[J].航空学报, 2020, 41(4):223391. ZHENG Y H, DENG X J, PANG Y, et al. Research on classification of relative density in lunar regolith drilling[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):223391(in Chinese).
[3] BAUMGARTNER E T, BONITZ R G, MELKO J P, et al. The Mars exploration rover instrument positioning system[C]//2005 IEEE Aerospace Conference. Piscataway:IEEE Press, 2005:1-19.
[4] MAKI J, THIESSEN D, POURANGI A, et al. The Mars science laboratory engineering cameras[J]. Space Science Reviews, 2012, 170(1-4):77-93.
[5] BEEGLE L, BHARTIA R, WHITE M, et al. Sherloc:Scanning habitable environments with raman&luminescence for organics&chemicals[C]//2015 IEEE Aerospace Conference. Piscataway:IEEE Press, 2015:1-11.
[6] 张元勋,黄靖,韩亮亮.星表移动探测机器人研究现状综述[J].航空学报, 2021, 42(1):523909. ZHANG Y X, HUANG J, HAN L L. Research status of planetary surface mobile exploration robots:Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523909(in Chinese).
[7] KELLER H U, GOETZ W, HARTWIG H, et al. Phoenix robotic arm camera[J]. Journal of Geophysical Research:Planets, 2008, 113(E3):E00A17.
[8] WEBER R. The InSight mission exploring the interior of Mars:N180003002[R]. Washington D.C.:NASA, 2018
[9] MAROV M Y, AVDUEVSKY V S, AKIM E L, et al. Phobos-Grunt:Russian sample return mission[J]. Advances in Space Research, 2004, 33(12):2276-2280.
[10] GOLDBERG S B, MAIMONE M W, MATTHIES L. Stereo vision and rover navigation software for planetary exploration[C]//Proceedings IEEE Aerospace Conference. Piscataway:IEEE Press, 2002:5.
[11] VERGAUWEN M, POLLEFEYS M, VAN GOOL L. A stereo-vision system for support of planetary surface exploration[J]. Machine Vision and Applications, 2003, 14(1):5-14.
[12] MATTHIES L, MAIMONE M, JOHNSON A, et al. Computer vision on Mars[J]. International Journal of Computer Vision, 2007, 75(1):67-92.
[13] 赵春晖,樊斌,田利民,等.基于极线几何的统计优化特征匹配算法[J].航空学报, 2018, 39(5):321727. ZHAO C H, FAN B, TIAN L M, et al. Statistical optimization feature matching algorithm based on epipolar geometry[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):321727(in Chinese).
[14] 郑燕红,邓湘金,姚猛,等.月球表层采样样品智能确认方法[J].宇航学报, 2020, 41(8):1094-1104. ZHENG Y H, DENG X J, YAO M, et al. An intelligent approach for identification of lunar surface sampling soil[J]. Journal of Astronautics, 2020, 41(8):1094-1104(in Chinese).
[15] 唐玲,梁常春,王耀兵,等.基于柔性补偿的行星表面采样机械臂控制策略研究[J].机械工程学报, 2017, 53(11):97-103. TANG L, LIANG C C, WANG Y B, et al. Research on flexible compensation control strategy for planetary surface sampling manipulator[J]. Journal of Mechanical Engineering, 2017, 53(11):97-103(in Chinese).
[16] 郑燕红,邓湘金,彭兢,等.基于人工势场法的月球表层采样装置避障规划[J].中国空间科学技术, 2015, 35(6):66-74. ZHENG Y H, DENG X J, PENG J, et al. Lunar surface sampling device collision avoidance planning based on artificial potential field method[J]. Chinese Space Science and Technology, 2015, 35(6):66-74(in Chinese).
[17] 陈丽平,顾征,郑燕红,等.一种航天器微小相机的视场覆盖增强方法[J].红外与激光工程, 2020, 49(S1):209-216. CHEN L P, GU Z, ZHENG Y H, et al. Coverage-enhancing method for view of micro camera on spacecraft[J]. Infrared and Laser Engineering, 2020, 49(S1):209-216(in Chinese).
[18] CHOBOTOV V A. Spacecraft attitude dynamics and control[M]. London:Cambridge University Press, 1991:6-8.
[19] GENNERY D B. Least-squares camera calibration including lens distortion and automatic editing of calibration points[M]. Berlin:Springer Series in Information Sciences, 2001.
[20] 马友青,刘少创,魏士俨,等.加权总体最小二乘的地面解析摄影测量算法[J].武汉大学学报信息科学版, 2015, 40(5):594-598. MA Y Q, LIU S C, WEI S Y, et al. Terrestrial analytical photogrammetry with weighted total least squares[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):594-598(in Chinese).
[21] 周凡桂,王晓光,高忠信,等.双目视觉绳系支撑飞行器模型位姿动态测量[J].航空学报, 2019, 40(12):123059. ZHOU F G, WANG X G, GAO Z X, et al. Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123059(in Chinese).
Outlines

/