On the cyclic elastoplastic constitutive model (considering the Chaboche nonlinear kinematic hardening rule), the strain-hardening creep constitutive model and the reasonable expansion of the advanced creep-fatigue damage model. The creep-fatigue damage of a certain type of turbine disk was simulated and predicted. The results show that during the service of 4 h cruise, the most dangerous zone of creep and fatigue damage of the turbine disc mainly at the bottom of the tenon groove, the disc edge close to the tongue and groove and the shape mutation area of the disc. Maximum damage is found at the end of the tenon groove, and the damage dominated by creep. The damage pattern is dominated by fatigue in the core area of the disk with lower temperature. The maximum damage of the turbine disc increases with the cruise time of a single flight, gradually from fatigue dominance condition to creep dominance condition. Research can provide important reference for the long-life and high-reliability design of aero-engine turbine disc.
CHEN Keming
,
TIAN Ruozhou
,
GUO Sujuan
,
WANG Runzi
,
ZHANG Chengcheng
,
CHEN Haofeng
,
ZHANG Xiancheng
,
TU Shandong
. Creep fatigue life prediction of aero-engine turbine disc under cyclic thermal load[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(5)
: 225290
-225290
.
DOI: 10.7527/S1000-6893.2021.25290
[1] ASME. ASME boiler and pressure vessel code, Section III, Division 1, Subsection NH, Class 1 Components in elevated temperature service[S]. New York:ASME, 2009.
[2] DOGAN B, AINSWORTH R. Defect assessment procedure for low to high temperature range[C]//Proceedings of ASME 2003 Pressure Vessels and Piping Conference. New York:ASME, 2008:105-111.
[3] ZHU S P, LEI Q, HUANG H Z, et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals[J]. International Journal of Damage Mechanics, 2017, 26(8):1219-1241.
[4] WANG R Z, ZHANG X C, TU S T, et al. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue, 2016, 90:12-22.
[5] DUNNE F P E. Fatigue crack nucleation:Mechanistic modelling across the length scales[J]. Current Opinion in Solid State and Materials Science, 2014, 18(4):170-179.
[6] SANGID M D. The physics of fatigue crack initiation[J]. International Journal of Fatigue, 2013, 57:58-72.
[7] WEN J F, SRIVASTAVA A, BENZERGA A, et al. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading[J]. Journal of the Mechanics and Physics of Solids, 2017, 108:68-84.
[8] WANG R Z, GUO S J, CHEN H F, et al. Multi-axial creep-fatigue life prediction considering history-dependent damage evolution:A new numerical procedure and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2019, 131:313-336.
[9] RCC-MR. Design and construction rules for mechanical components of FBR nuclear islands[S]. Paris:AFCEN, 2002.
[10] MANSON S S. A simple procedure for estimating high-temperature low-cycle fatigue[J]. Experimental Mechanics, 1968, 8(8):349-355.
[11] YU Z Y, ZHU S P, LIU Q, et al. Multiaxial fatigue damage parameter and life prediction without any additional material constants[J]. Materials (Basel, Switzerland), 2017, 10(8):923.
[12] ROBINSON E L. Effect of temperature variation on the long-time rupture strength of steels[J]. ASME Transactions, 1952:777-781.
[13] PRIEST R H, ELLISON E G. A combined deformation map-ductility exhaustion approach to creep-fatigue analysis[J]. Materials Science and Engineering, 1981, 49(1):7-17.
[14] SPINDLER M W, PAYTEN W M, SAXENA A, et al. Advanced ductility exhaustion methods for the calculation of creep damage during creep-fatigue cycling[J]. Journal of ASTM International, 2011, 8(7):103806.
[15] KANG G Z, KAN Q H. Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel[J]. Mechanics of Materials, 2007, 39(5):488-499.
[16] WEN J F, TU S T, XUAN F Z, et al. Effects of stress level and stress state on creep ductility:evaluation of different models[J]. Journal of Materials Science & Technology, 2016, 32(8):695-704.
[17] WANG Y Q, COULES H E, TRUMAN C E, et al. Effect of elastic follow-up and ageing on the creep of an austenitic stainless steel[J]. International Journal of Solids and Structures, 2018, 135:219-232.
[18] WEN J F, TU S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210.
[19] 姚萍, 王润梓, 郭素娟, 等. GH4169合金蠕变疲劳行为的有限元模拟及寿命预测[J]. 航空学报, 2018, 39(12):422193. YAO P, WANG R Z, GUO S J, et al. Finite elementsimulations of creep-fatigue behavior and life assessment of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422193(in Chinese).
[20] SUN G Q, SHANG D G, BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue, 2010, 32(7):1108-1115.
[21] CHEN G, ZHANG Y, XU D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650℃[J]. Materials Science and Engineering:A, 2016, 655:175-182.
[22] ZHU S P, LIU Y H, LIU Q, et al. Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept[J]. International Journal of Fatigue, 2018, 113:33-42.
[23] 张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014(in Chinese).
[24] 江有为. 某GH4169动力涡轮盘裂纹扩展研究[D]. 杭州:浙江大学, 2016. JIANG Y W. Fatigue crack growth research of a GH4169 power turbine disc[D]. Hangzhou:Zhejiang University, 2016(in Chinese).