Considering the time-varying rotational inertia, uncertain rotational inertia and wind disturbance of the receiver aircraft, a predefined-time attitude stabilization control strategy for the receiver aircraft during the refueling phase in aerial refueling task is investigated in this paper. First, attitude dynamic model and kinematic models of the receiver aircraft with time-varying rotational inertia, internal uncertainty, and external disturbance are established. Second, to improve the rapidity of attitude stabilization control, a robust sliding-mode attitude stabilization controller is designed on the basis of the predefined-time stability theory. In comparison to the existing control strategies for the receiver aircraft, the proposed controller can ensure that receiver's attitude be stabilized in the predefined time, and the convergence time can be explicitly defined in advance within the allowable range through controller parameters according to the control demand and actuator physical limits. Lyapunov stability analysis and numerical simulation results manifest that the proposed control strategy exhibits excellent performance of attitude stabilization.
[1] 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J].航空学报, 2014, 35(9):2390-2410. QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2390-2410(in Chinese).
[2] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J].航空学报, 2014, 35(9):2375-2389. LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2375-2389(in Chinese).
[3] PANDAY A, PEDRO J. Particle swarm-optimised PID control of a receiver aircraft during aerial refuelling[C]//2018 IEEE Congress on Evolutionary Computation (CEC). Piscataway:IEEE Press, 2018:1-8.
[4] FRAVOLINI M L, FICOLA A, CAMPA G, et al. Modeling and control issues for autonomous aerial refueling for UAVs using a probe-drogue refueling system[J].Aerospace Science and Technology, 2004, 8(7):611-618.
[5] WANG J, PATEL V V, CAO C Y, et al. Novel L1 adaptive control methodology for aerial refueling with guaranteed transient performance[J].Journal of Guidance, Control, and Dynamics, 2008, 31(1):182-193.
[6] SU Z K, WANG H L, LI N, et al. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode[J].Mechanical Systems and Signal Processing, 2018, 101:338-360.
[7] 王宏伦, 刘一恒, 苏子康. 无人机软管式自主空中加油精准对接控制[J].电光与控制, 2020, 27(9):1-8. WANG H L, LIU Y H, SU Z K. Precise docking control for UAV autonomous aerial refueling[J].Electronics Optics & Control, 2020, 27(9):1-8(in Chinese).
[8] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J].航空学报, 2020, 41(1):323490. FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323490(in Chinese).
[9] WAISHEK J, DOGAN A, BLAKE W. Derivation of the dynamics equations of receiver aircraft in aerial refueling[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):586-598.
[10] WANG H T, DONG X M, XUE J P, et al. Modeling and simulation of a time-varying inertia aircraft in aerial refueling[J].Chinese Journal of Aeronautics, 2016, 29(2):335-345.
[11] 郭军, 董新民, 王龙. 自主空中加油时变质量无人作战飞机非线性控制[J].控制理论与应用, 2012, 29(5):571-579. GUO J, DONG X M, WANG L. Nonlinear control for unmanned combat air vehicle with time-varying mass in autonomous aerial refueling[J].Control Theory & Applications, 2012, 29(5):571-579(in Chinese).
[12] WANG N, DENG Q, XIE G M, et al. Hybrid finite-time trajectory tracking control of a quadrotor[J].ISA Transactions, 2019, 90:278-286.
[13] ZUO Z Y, HAN Q L, NING B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J].IEEE Transactions on Industrial Informatics, 2018, 14(6):2322-2334.
[14] SÁNCHEZ-TORRES J D, GÓMEZ-GUTIÉRREZ D, LÓPEZ E, et al. A class of predefined-time stable dynamical systems[J].IMA Journal of Mathematical Control and Information, 2017, 35(S1):1-29.
[15] MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, JIMÉNEZ-RODRÍGUEZ E, et al. Predefined-time robust stabilization of robotic manipulators[J].IEEE/ASME Transactions on Mechatronics, 2019, 24(3):1033-1040.
[16] MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, GUTIÉRREZ-ALCALÁ S, et al. Predefined-time robust contour tracking of robotic manipulators[J].Journal of the Franklin Institute, 2019, 356(5):2709-2722.
[17] WANG F, MIAO Y, LI C Y, et al. Attitude control of rigid spacecraft with predefined-time stability[J].Journal of the Franklin Institute, 2020, 357(7):4212-4221.
[18] 张超凡, 董琦. 考虑输入饱和的固定翼无人机自适应增益滑模控制[J].航空学报, 2020, 41(S1):723755. ZHANG C F, DONG Q. Adaptive-gain sliding mode control for fixed-wing UAVs with input saturation[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723755(in Chinese).
[19] LIU Y H, WANG H L, FAN J X. Novel docking controller for autonomous aerial refueling with probe direct control and learning-based preview method[J].Aerospace Science and Technology, 2019, 94:105403.
[20] SU Z K, WANG H L. Probe motion compound control for autonomous aerial refueling docking[J].Aerospace Science and Technology, 2018, 72:1-13.
[21] 韩京清. 从PID技术到"自抗扰控制"技术[J].控制工程, 2002, 9(3):13-18. HAN J Q. From PID technique to active disturbances rejection control technique[J].Basic Automation, 2002, 9(3):13-18(in Chinese).
[22] GUO B Z, ZHAO Z L. On convergence of tracking differentiator[J].International Journal of Control, 2011, 84(4):693-701.
[23] POLYCARPOU M M. Stable adaptive neural control scheme for nonlinear systems[J].IEEE Transactions on Automatic Control, 1996, 41(3):447-451.
[24] YU Z Q, QU Y H, ZHANG Y M. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect[J].Aerospace Science and Technology, 2018, 77:189-205.
[25] ZHU Z, XIA Y Q, FU M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J].International Journal of Robust and Nonlinear Control, 2011, 21(6):686-702.