Material Engineering and Mechanical Manufacturing

Simulation and experiment of array remote-field eddy current sensor for hole edge defect of aircraft high lock bolt

  • SONG Kai ,
  • OUYANG Yongjie ,
  • FANG Zhihong ,
  • HUO Junhong ,
  • CUI Ximing
Expand
  • Key Laboratory of Nondestructive Testing of the Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China

Received date: 2021-01-21

  Revised date: 2021-02-22

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (51865033); Foundation for Key Laboratory of Nondestructive Testing of Ministry of Education of China (EW201908438)

Abstract

Detection of the hidden defect in the hole edge of aircraft high lock bolt is a difficulty in the field of aviation nondestructive testing. The remote field eddy current testing technology is not affected by the skin effect, and has great advantages in detection of hidden defects in the holes of fasteners of aircraft high lock bolts. For the remote field eddy current testing of hole edge defects of high lock bolt fasteners, an array remote field eddy current sensor is developed. A 3D model for detecting hole edge hidden defects of high lock bolts is established, and the placement distance between the detection coil center and the high lock bolt center is optimized. The attenuation trend of the signal of defect in the weak magnetic field between adjacent channels is then studied by adopting the detection method that array remote-field eddy current sensors are placed on the high lock bolt. Simulation and experimental results show that the detection sensitivity is the best when the distance between the center of the detection coil and the center of the high lock bolt is 11 mm. The detection signal of magnetic field weak area between adjacent channels attenuates to a certain extent. The optimized probe can detect hole edge hidden defects in fasteners with buried depth of 4 mm and length×width×depth of 5 mm×0.2 mm×2 mm. With the increase of the defect length, the amplitude of detection signal increases.

Cite this article

SONG Kai , OUYANG Yongjie , FANG Zhihong , HUO Junhong , CUI Ximing . Simulation and experiment of array remote-field eddy current sensor for hole edge defect of aircraft high lock bolt[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 425301 -425301 . DOI: 10.7527/S1000-6893.2021.25301

References

[1] 杨强, 惠旭龙, 白春玉, 等. 高锁螺栓连接件动态拉伸响应与失效机理[J]. 爆炸与冲击, 2020, 40(10):56-65. YANG Q, XI X L, BAI C Y, et al. Dynamic tensile response and failure mechanism of hi-lock bolt joint[J]. Explosion and Shock Waves, 2020, 40(10):56-65(in Chinese).
[2] 谭志勇, 张中原, 郑日恒, 等. 飞行器典型结构的热适配分体螺栓连接技术[J]. 航空学报, 2020, 41(8):224062. TAN Z Y, ZHANG Z Y, ZHENG R H, et al. Connection technique for thermal adaptive bolts with split-piece design in typical vehicle structures[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):224062(in Chinese).
[3] 雅柯维茨A И, 西洛特金O C, 基谢列夫H M, 等. 飞机长寿命螺栓连接和铆接技术[M]. 张国梁, 译. 北京:航空工业出版社, 1991. YAKOVITZ A И, CИFOTKИH O C, KISELEV H M, et al. Aircraft long-life bolting and riveting technology[M]. ZHANG G Y, translated. Beijing:Aviation Industry Press, 1991(in Chinese).
[4] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4):222465. CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):222465(in Chinese).
[5] 刘文珽. 结构可靠性设计手册[M]. 北京:国防工业出版社, 2008. LIU W T. Structural reliability design manual[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[6] 李政. 飞机常见结构原位超声无损检测技术研究[D]. 长沙:国防科学技术大学, 2010:47-60. LI Z. Research on in situ ultrasonic non-destructive test used for common structures of aircraft[D]. Changsha:National University of Defense Technology, 2010:47-60(in Chinese).
[7] 冯剑飞, 耿荣生, 邬冠华, 等. 机体飞行载荷疲劳试验中的声发射特性分析[J]. 机械工程学报, 2010, 46(8):6-11. FENG J F, GENG R S, WU G H, et al. AE characteristic analysis in aircraft fatigue test under flight loading condition[J]. Journal of Mechanical Engineering, 2010, 46(8):6-11(in Chinese).
[8] 田云飞, 曹宗杰. 红外检测在老龄飞机蒙皮搭接结构腐蚀检测中的应用分析[J]. 飞机设计, 2013, 33(3):31-35. TIAN Y F, CAO Z J. The analysis of aging aircraft skin lap joint structure based on infrared NDI[J]. Aircraft Design, 2013, 33(3):31-35(in Chinese).
[9] 后雪冰, 付跃文. 飞机多层结构铆钉孔周缺陷的阵列脉冲涡流检测[J]. 无损检测, 2018, 40(10):1-4, 33. HOU X B, FU Y W. Array pulsed eddy current detection of rivet hole defect in multi-layer metal riveting structure in aircraft[J]. Nondestructive Testing Technologying, 2018, 40(10):1-4, 33(in Chinese).
[10] WU D H, ZHANG Z Y, LIU Z L, et al. 3-D simulation of remote field eddy current detection for stress corrosion cracks in pipeline[J]. Advanced Materials Research, 2013, 760-762:1154-1158.
[11] CHEN Y B, ZHENG J, LUO W J. Remote field eddy current testing technology for ferromagnetic heat exchanger tubes[C]//Proceedings of ASME 2012 Pressure Vessels and Piping Conference. New York:ASME, 2013:237-239.
[12] FAN X H, CHEN T, HE Y T, et al. An excitation coil layout method for improving the sensitivity of a rosette flexible eddy current array sensor[J]. Smart Materials and Structures, 2019, 29(1):015020.
[13] JANOVEC M, BUGAJ M, SMETANA M. Eddy Current array inspection of riveted joints[J]. Transportation Research Procedia, 2019, 43:48-56.
[14] 吴振成, 李来平, 涂俊, 等. 铝合金搅拌摩擦焊焊接接头的涡流阵列检测[J]. 无损检测, 2018, 40(1):25-28. WU Z C, LI L P, TU J, et al. Testing of friction stir welding joint of aluminum alloy based on eddy current array[J]. Nondestructive Testing Technologying, 2018, 40(1):25-28(in Chinese).
[15] LORD W, SUN Y S, UDPA S S, et al. A finite element study of the remote field eddy current phenomenon[J]. IEEE Transactions on Magnetics, 1988, 24(1):435-438.
[16] SHE S B, CHEN Y F, HE Y Z, et al. Optimal design of remote field eddy current testing probe for ferromagnetic pipeline inspection[J]. Measurement, 2021, 168:108306.
[17] 徐志远, 林章鹏, 袁湘民, 等. 管道弯头缺陷检测外置式远场涡流探头设计[J]. 仪器仪表学报, 2017, 38(5):1119-1125. XU Z Y, LIN Z P, YUAN X M, et al. External remote field eddy current probe for defect detection at pipe elbows[J]. Chinese Journal of Scientific Instrument, 2017, 38(5):1119-1125(in Chinese).
[18] 赵本勇, 宋凯, 宁宁, 等. 飞机铆接件隐藏缺陷的远场涡流检测探头优化与试验[J]. 航空学报, 2020, 41(1):423111. ZHAO B Y, SONG K, NING N, et al. Optimization and experimentation of remote field eddy current testing probe for hidden defects of aircraft riveting parts[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):423111(in Chinese).
[19] 宋凯, 方志泓, 崔西明, 等. 飞机铆接构件PRFECT探头的线圈夹角影响[J]. 航空学报, 2021, 42(10):524647. SONG K, FANG Z H, CUI X M, et al. Influence of coil angles of PRFECT probe of aircraft riveting component[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524647(in Chinese).
[20] JANOVEC M, SMETANA M, BUGAJ M. Eddy Current array inspection of Zlin 142 fuselage riveted joints[J]. Transportation Research Procedia, 2019, 40:279-286.
[21] CHEN G L, ZHANG W M, ZHANG Z J, et al. A new rosette-like eddy current array sensor with high sensitivity for fatigue defect around bolt hole in SHM[J]. NDT & E International, 2018, 94:70-78.
[22] 李兵, 沈功田, 周裕峰, 等. 电站锅炉无损检测技术[J]. 无损检测, 2006(8):426-430. LI B, SHEN G T, ZHOU Y F. Nondestructive testing technique for power station boiler[J]. Nondestructive Testing, 2006(8):426-430(in Chinese).
[23] 张雅丽. 并行多通道远场涡流快速检测系统的优化设计[D]. 成都:电子科技大学, 2019:67. ZHANG Y L. Optimal design of parallel multi-channel far-field eddy current rapid detection system[D]. Chengdu:University of Electronic Science and Technology of China, 2019:67(in Chinese).
Outlines

/