Solid Mechanics and Vehicle Conceptual Design

MUSIC damage identification algorithm based on guided wave model

  • ZUO Hao ,
  • XU Caibin ,
  • YANG Zhibo
Expand
  • 1. School of Construction and Machinery, Chang'an University, Xi'an 710064, China;
    2. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;
    3. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2020-12-23

  Revised date: 2021-02-21

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (51905041,52005058,51875433);Natural Science Basic Research Program of Shaanxi(2020 JQ-362);National Key Research and Development Project(2020YFB2010800); the Fundamental Research Funds for the Central Universities(300102259303)

Abstract

This paper presents a new two-dimensional near-field Multiple Signal Classification (MUSIC) damage identification algorithm for damage location of composite structures in structural health monitoring. The wave propagation model is introduced into the proposed MUSIC damage model. The cross-correlation function of residual signals received by experiment and scattered signals received by damage scattering model are developed for spatial spectrum estimation MUSIC algorithm. The spatial spectrum estimation MUSIC algorithm is employed for damage identification of composite structures due to the orthogonality of signal and noise. The numerical example and experiments are employed to demonstrate the validity of proposed MUSIC damage identification algorithm for damage identification with high accuracy and resolution. The proposed damage identification algorithm is further verified for damage identification of aircraft vertical tail. The stiffeners of aircraft vertical tail have great influence on propagation characteristics of guided waves, so the regional damage monitoring strategy is proposed. The experimental results demonstrate the proposed damage identification algorithm is appropriate for complex composite structure.

Cite this article

ZUO Hao , XU Caibin , YANG Zhibo . MUSIC damage identification algorithm based on guided wave model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 225143 -225143 . DOI: 10.7527/S1000-6893.2021.25143

References

[1] 刘向民, 姚卫星, 陈方. 复合材料层合板结构冲击损伤数值模拟的损伤力学模型[J]. 航空学报, 2016, 37(10):3054-3063. LIU X M, YAO W X, CHEN F. Damage mechanics model for simulating impact responses of composite laminated structures[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3054-3063(in Chinese).
[2] 姜丽萍. C919的制造技术热点及最新研制进展[J]. 航空制造技术, 2013, 442(22):26-31. JIANG L P. Hot topic and the lateset advances in manufacturing technology of C919[J]. Aeronautical Manufacturing Technology, 2013, 442(22):26-31(in Chinese).
[3] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析、试验及验证[J]. 航空学报, 2020,41(9):223688. LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(9):223688(in Chinese).
[4] 朱炜垚, 许希武. 含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究[J]. 复合材料学报, 2012, 29(5):171-178. ZHU W Y, XU X W. Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage[J]. Acta Materiae Compositae Sinica, 2012, 29(5):171-178(in Chinese).
[5] YANG Z B, CHEN X F, XIE Y, et al. Wave motion analysis and modeling for membrane structures via wavelet finite element method[J]. Applied Mathematical Modelling, 2016, 40(3):2407-2420.
[6] ZUO P, YU X, FAN Z. Acoustoelastic guided waves in waveguides with arbitrary prestress[J]. Journal of Sound and Vibration, 2019, 469:115113.
[7] 朱龙翔, 赵时, 王悦民, 等. 含弯头管道超声导波检测[J]. 中南大学学报(自然科学版), 2020, 51(10):2844-2854. ZHU L X, ZHAO S, WANG Y M, et al. Detection of pipeline with elbow using ultrasonic guided wave[J]. Journal of Central South University (Science and Technology), 2020,51(10):2844-2854(in Chinese).
[8] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring:A review[J]. Smart Materials and Structures, 2016, 25(5):1-27.
[9] YU X, FAN Z, PULIYAKOTE S, et al. Remote monitoring of bond line defects between a composite panel and a stiffener using distributed piezoelectric sensors[J]. Smart Material Structures, 2018, 27(3):035014.
[10] XU K, MINONZIO J G, TA D, et al. Sparse SVD method for high-resolution extraction of the dispersion curves of ultrasonic guided waves[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2016,63(10):1514-1524.
[11] 贾维敏, 姚敏立, 金伟. 阵列信号参数估计及应用[M]. 北京:北京理工大学出版社, 2013. JIA W M, YAO M L, JIN W. Parameters estimation and application for array signal[M]. Beijing:Beijing Institute of Technology Press, 2013(in Chinese).
[12] SCHMIDT R O. A signal subspace approach to multiple emitter location spectral estimation[D]. PaloAlto:Stanford University, 1981.
[13] HAN J H, KIM Y J. Structural health monitoring of plate by using ultrasonic Lamb wave and time reversal, multiple signal classification beam forming[J]. Acoustical Society of America Journal, 2010, 128(4):2443-2450.
[14] 钟永腾, 袁慎芳, 邱雷. 基于梅花阵列的复合材料全方位冲击定位方法[J]. 复合材料学报, 2014, 31(5):1369-1374. ZHONG Y T, YUAN S F, QIU L. Omni-directional impact localization method on composite structure using plum blossom array[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1369-1374(in Chinese).
[15] ZHONG Y, XIANG J, GAO H, et al. Impact energy level assessment of composite structures using MUSIC-ANN approach[J]. Structural Control and Health Monitoring, 2016, 23(5):825-837.
[16] ZHONG Y, XIANG J. A two-dimensional plum-blossom sensor array-based multiple signal classification method for impact localization in composite structures[M]. New York:John Wiley & Sons, 2016.
[17] JIANG M, SAI Y, GENG X, et al. Development of an FBG sensor array for multi-impact source localization on CFRP structures[J]. Sensors-Basel, 2016, 16(10):1-12.
[18] PERELLI A, DI I T, MARZANI A, et al. Model-based compressive sensing for damage localization in Lamb wave inspection[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2013, 60(10):2089-2097.
[19] XU C B, YANG Z B, CHEN X F, et al. A guided wave dispersion compensation method based on compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 103:89-104.
[20] ZUO H, YANG Z, SUN Y, et al. Wave propagation of laminated composite plates via GPU-based wavelet finite element method[J]. Science China Technological Sciences, 2017,60(6):832-843.
[21] IHN J B, CHANG F K. Pitch-catch active sensing methods in structural health monitoring for aircraft structures[J]. Structural Health Monitoring, 2008, 7(1):5-19.
Outlines

/