The non-cooperative passive detection system obtains the reference signal by purifying the direct-path signal, and the purity of the reference signal will make a difference to the performance of target detection. A novel algorithm for reference signal purification is proposed based on sparse characteristics. First, the mixed signal received by the reference channel is transformed to the fractional Fourier domain. The sparse characteristics of direct-path signal and multipath signals are analyzed in the fractional Fourier domain. Then, the estimation of parameters from derivation of peaks in the fractional Fourier domain will be used to reconstruct the direct-path signal. Finally, simulation results demonstrate that the proposed algorithm is effective and outperforms the temporal adaptive filter as well as the purified reference signal is distortionless.
YING Tao
,
WANG Xuebao
,
TIAN Wei
,
ZHOU Cheng
,
HOU Xiaoyang
. A novel algorithm for reference signal purification in non-cooperative passive detection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(2)
: 325025
-325025
.
DOI: 10.7527/S1000-6893.2021.25025
[1] ZHANG X D, LI H B, HIMED B. Maximum likelihood delay and Doppler estimation for passive sensing[J]. IEEE Sensors Journal, 2019, 19(1):180-188.
[2] PAINE S, O'HAGAN D W, INGGS M, et al. Evaluating the performance of FM-based PCL radar in the presence of jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2):631-643.
[3] ZAIMBASHI A. Target detection in analog terrestrial TV-based passive radar sensor:Joint delay-Doppler estimation[J]. IEEE Sensors Journal, 2017, 17(17):5569-5580.
[4] GUO S, WANG J, MA H, et al. Modified blind equalization algorithm based on cyclostationarity for contaminated reference signal in airborne PBR[J]. Sensors (Basel, Switzerland), 2020, 20(3):788.
[5] ZAIMBASHI A, DERAKHTIAN M, SHEIKHI A. Invariant target detection in multiband FM-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):720-736.
[6] LIU C C, CHEN W D. Sparse self-calibration imaging via iterative MAP in FM-based distributed passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):538-542.
[7] POULLIN D. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3):143.
[8] PALMER J E, HARMS H A, SEARLE S J, et al. DVB-T passive radar signal processing[J]. IEEE Transactions on Signal Processing, 2013, 61(8):2116-2126.
[9] RAOUT J, SANTORI A, MOREAU E. Space-time clutter rejection and target passive detection using the APES method[J]. IET Signal Processing, 2010, 4(3):298.
[10] COLONE F, LANGELLOTTI D, LOMBARDO P. DVB-T signal ambiguity function control for passive radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):329-347.
[11] GILL L P, GRENIER D, CHOUINARD J Y. Use of XMTM radio satellite signal as a source of opportunity for passive coherent location[J]. IET Radar, Sonar & Navigation, 2011, 5(5):536.
[12] COLONE F, WOODBRIDGE K, GUO H, et al. Ambiguity function analysis of wireless LAN transmissions for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):240-264.
[13] COLONE F, FALCONE P, BONGIOANNI C, et al. WiFi-based passive bistatic radar:Data processing sche-mes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1061-1079.
[14] STINCO P, GRECO M S, GINI F, et al. Ambiguity function and Crameér-Rao bounds for universal mobile telecommunications system-based passive coherent location systems[J]. IET Radar, Sonar & Navigation, 2012, 6(7):668.
[15] GOGINENI S, RANGASWAMY M, RIGLING B D, et al. Cramér-Rao bounds for UMTS-based passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(1):95-106.
[16] DE MAIO A, FOGLIA G, PASQUINO N, et al. Measurement and comparative analysis of clutter for GSM and UMTS passive radars[J]. IET Radar, Sonar & Navigation, 2010, 4(3):412.
[17] SALAH A A, RAJA ABDULLAH R S A, ISMAIL A, et al. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7):545-547.
[18] YARDLEY H. Bistatic radar based on DAB illuminators:The evolution of a practical system[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(98):13-16.
[19] 杨博. 空基辐射源非合作探测系统关键技术研究[D]. 长沙:国防科学技术大学, 2011:13-17. YANG B. Study of key techniques on spacial emitter non-cooperative detection system[D]. Changsha:National University of Defense Technology, 2011:13-17(in Chinese).
[20] 万显荣, 程熠瑶, 易建新, 等. DTMB外辐射源雷达参考信号重构信道估计新方法[J]. 电子与信息学报, 2017, 39(5):1044-1050. WAN X R, CHENG Y Y, YI J X, et al. Novel channel estimation of reference signal reconstruction for DTMB-based passive radar[J]. Journal of Electronics & Information Technology, 2017, 39(5):1044-1050(in Chinese).
[21] COLONE F, CARDINALI R, LOMBARDO P, et al. Space-time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar[J]. IET Radar, Sonar & Navigation, 2009, 3(3):253.
[22] 应涛, 黄高明, 左炜, 等. 非合作无源探测中的假设检验弱目标检测方法[J]. 航空学报, 2016, 37(2):626-636. YING T, HUANG G M, ZUO W, et al. Weak target detection method based on hypothesis test theory in non-cooperative passive detection[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):626-636(in Chinese).
[23] NAMIAS V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3):241-265.
[24] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[25] PEI S C, DING J J. Closed-form discrete fractional and affine Fourier transforms[J]. IEEE Transactions on Signal Processing, 2000, 48(5):1338-1353.