Complex load test technology for aircraft panels: Review

  • WANG Binwen ,
  • CHEN Xiangming ,
  • DENG Fanchen ,
  • CHAI Yanan
Expand
  • Aeronautics Science and Technology Key Laboratory of Full Scale Aircraft Structure and Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2020-11-19

  Revised date: 2021-02-01

  Online published: 2021-02-24

Supported by

Civil Aircraft Scientific Research Project (MJ-2015-F-038)

Abstract

Panel tests are an important part of the building block verification process for aircraft development.Due to the complex stress on panels, the actual load form and boundary conditions should be comprehensively considered in the panel test.The complex load test technology is an inevitable choice to simulate the real stress and boundary constraints of aircraft panels.Therefore, domestic and foreign researchers and institutions have conducted extensive research and development work on the panel test technology and facilities, effectively reducing the cost of the test and verification, shortening the development cycle of aircraft, and strongly supporting aircraft design and verification.Based on the stress analysis of civil aircraft panels, this paper summarizes and analyzes the complex load test technology of aircraft panels, including mainly the compression-shear load test technology of flat panels, the combined shear/air pressurization and axial tension/compression load test technology of curved panels, as well as the general anti-coupling and anti-interference problems in the process of combined load application.In addition, three kinds of curved panel test facilities representing the advanced level of the panel testing technology are analyzed and reviewed.Finally, the development status of the complex boundary load test technology for aircraft panels is summarized and prospected.

Cite this article

WANG Binwen , CHEN Xiangming , DENG Fanchen , CHAI Yanan . Complex load test technology for aircraft panels: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 24987 -024987 . DOI: 10.7527/S1000-6893.2021.24987

References

[1] GENG X L, JI F F, WANG J, et al.Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J].Journal of Composite Materials, 2017, 51(26):3647-3656.
[2] 孙为民, 童明波, 董登科, 等.民机大型加筋曲板在剪切载荷下失效破坏试验[J].南京航空航天大学学报, 2008, 40(4):521-525. SUN W M, TONG M B, DONG D K, et al.Failure damage experiments of stiffened panels subjected to shear loading[J].Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4):521-525(in Chinese).
[3] ZHAO L B, WANG K K, DING F, et al.A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding[J].Results in Physics, 2019, 13:102205.
[4] QIN T L, PENG L, MA B, et al.Experimental and numerical investigation on compressive stability of stiffened composite panel with multiple stringers and frames[J].Frontiers in Aerospace Engineering, 2017, 6(1):28-38.
[5] WANG Y, WANG F S, JIA S Q, et al.Experimental and numerical studies on the stability behavior of composite panels stiffened by tilting hat-stringers[J].Composite Structures, 2017, 174:187-195.
[6] KOLANU N R, RAJU G, RAMJI M.Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J].Composite Structures, 2018, 196:135-154.
[7] 卢秉贺, 李萍, 赵继伟.民用飞机后机身壁板控制失效模式和控制载荷工况分析[J].沈阳航空航天大学学报, 2012, 29(3):60-63. LU B H, LI P, ZHAO J W.Research on controlling load case and controlling failure mode for aft fuselage panel of civil aircraft[J].Journal of Shenyang Aerospace University, 2012, 29(3):60-63(in Chinese).
[8] 张景新, 郭沛欣, 白杰.先进铝锂合金机身壁板结构承载能力研究[J].航空科学技术, 2013, 24(3):23-26. ZHANG J X, GUO P X, BAI J.Strength evaluation of advanced aluminum-lithium fuselage panels[J].Aeronautical Science & Technology, 2013, 24(3):23-26(in Chinese).
[9] 林博, 金海波.复合材料机身壁板屈曲优化设计[J].飞机设计, 2014, 34(3):11-15. LIN B, JIN H B.Optimization for buckling loads of composite fuselage panels[J].Aircraft Design, 2014, 34(3):11-15(in Chinese).
[10] 张海英, 牛智奇, 董登科, 等.疲劳裂纹扩展试验载荷谱加重方法研究[J].工程力学, 2015, 32(9):236-242. ZHANG H Y, NIU Z Q, DONG D K, et al.Research on load enhancement method for fatigue crack growth test[J].Engineering Mechanics, 2015, 32(9):236-242(in Chinese).
[11] 白杰, 郭沛欣, 张景新.铝锂合金机身壁板抗压能力对比[J].航空制造技术, 2012, 55(10):78-79. BAI J, GUO P X, ZHANG J X.Comparison on compressive bearing capacity of aluminum lithium alloy fuselage panel[J].Aeronautical Manufacturing Technology, 2012, 55(10):78-79(in Chinese).
[12] 张国权, 陈卫卫, 刘伟.基于MSC Nastran的机身壁板剪切试验件屈曲分析[J].计算机辅助工程, 2013, 22(S1):202-205. ZHANG G Q, CHEN W W, LIU W.Buckling analysis on shear test specimen of fuselage panel based on MSC Nastran[J].Computer Aided Engineering, 2013, 22(Sup 1):202-205(in Chinese).
[13] 陶梅贞.现代飞机结构综合设计[M].西安:西北工业大学出版社, 2001. TAO M Z.Integrated design of modern aircraft structure[M].Xi'an:Northwestern Polytechnical University Press, 2001(in Chinese).
[14] MUNROE J, WILKINS K, GRUBER M, et al.Integral airframe structures (IAS):Validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs:NASA/CR-2000-209337[R].Was-hington,D.C.:NASA, 2000.
[15] WIJAYRATNE D.Validation of design and analysis techniques of tailored composite structures:NASA/CR-2004-212650[R].Washington, D.C.:NASA, 2001.
[16] 冯晓伟, 卢永刚, 李永泽.飞机目标在爆炸冲击波作用下的毁伤效应评估方法[J].高压物理学报, 2019, 33(4):124-128. FENG X W, LU Y G, LI Y Z.Damage assessment method of aircraft targets under blast wave[J].Chinese Journal of High Pressure Physics, 2019, 33(4):124-128(in Chinese).
[17] 叶聪杰, 杜艳梅, 于振波.飞机机翼-机身连接结构受力特性分析研究[J].民用飞机设计与研究, 2017(2):59-66. YE C J, DU Y M, YU Z B.Research on mechanical behavior of connection between wing and fuselage[J].Civil Aircraft Design & Research, 2017(2):59-66(in Chinese).
[18] WANHILL R J H, PLATENKAMP D J, HATTENBERG T, et al.Glare teardowns from the megaliner barrel (mlb) fatigue test[M]//ICAF 2009, Bridging the Gap between Theory and Operational Practice.Dordrecht:Springer Netherlands, 2009:145-167.
[19] 张国凡, 孙侠生, 吴存利, 等.复合材料整体化多墙盒段渐进式失效分析和试验验证[J].复合材料学报, 2016, 33(10):2344-2354. ZHANG G F, SUN X S, WU C L, et al.Progressive failure analysis and test validation of integral multi-spar composite box[J].Acta Materiae Compositae Sinica, 2016, 33(10):2344-2354(in Chinese).
[20] 王春寿, 陈普会, 隋晓东, 等.复合材料多墙盒段的设计与后屈曲性能[J].复合材料学报, 2013, 30(5):174-179. WANG C S, CHEN P H, SUI X D, et al.Multi-spar composite box design and its post-buckling analysis[J].Acta Materiae Compositae Sinica, 2013, 30(5):174-179(in Chinese).
[21] SANDORFF P E.Design of structural models, with application to stiffened panels under combined shear and compression[J].Journal of the Aeronautical Sciences, 1956, 23(7):623-632.
[22] SANDERSON P A, FISCHEL J R.Corrugated panels under combined compression and shear load[J].Journal of the Aeronautical Sciences, 1940, 7(4):148-153.
[23] ZUCCO G, OLIVERI V, PEETERS D, et al.Static test of a thermoplastic composite wingbox under shear and bending moment[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2018.
[24] CORDISCO P, BISAGNI C.Cyclic buckling tests of stiffened composite curved panels under compression and shear[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference.Reston:AIAA, 2008:2124.
[25] ABRAMOVICH H, WELLER T, BISAGNI C.Buckling behavior of composite laminated stiffened panels under combined shear-axial compression[J].Journal of Aircraft, 2008, 45(2):402-413.
[26] BISAGNI C, CORDISCO P.An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading[J].Composite Structures, 2003, 60(4):391-402.
[27] BISAGNI C, CORDISCO P.Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque[J].Composite Structures, 2006, 73(2):138-149.
[28] BISAGNI C.Numerical analysis and experimental correlation of composite shell buckling and post-buckling[J].Composites Part B:Engineering, 2000, 31(8):655-667.
[29] SERRA J, PIERRÉ J E, PASSIEUX J C, et al.Validation and modeling of aeronautical composite structures subjected to combined loadings:the VERTEX project.Part 1:Experimental setup, FE-DIC instrumentation and procedures[J].Composite Structures, 2017, 179:224-244.
[30] DONALD J B.Combined load test fixture:NASA/TM-2010-216211[R].Washington, D.C.:NASA, 2010.
[31] FARLEY G L, BAKER D J.In-plane shear test of thin panels[J].Experimental Mechanics, 1983, 23(1):81-88.
[32] WILCKENS D, ODERMANN F, KLING A.Buckling and post buckling of stiffened CFRP panels under compression and shear-test and numerical analysis[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2013:1824.
[33] 童贤鑫.压剪复合加载方案及装置:CN1016277B[P].1992-04-15. TONG X X.Compression shear compound loading scheme and device:CN1016277B[P].1992-04-15(in Chinese).
[34] ZHU S H, YAN J Y, WANG Y Q, et al.Buckling and postbuckling experiments of integrally stiffened panel under compression-shear loads[J].Journal of Aircraft, 2014, 52(2):680-691.
[35] 柴亚南, 李崇, 王力立, 等.一种能够均匀施加轴向压缩和剪切载荷的试验装置:CN103033418A[P].2013-04-10. CHAI Y N,LI C,WANG L L,et al.A test device capable of uniformly applying axial compression and shear loads:CN103033418A[P].2013-04-10(in Chinese).
[36] 柴亚南, 李崇, 陈丽敏, 等.一种平直壁板压剪试验装置:CN111595699A[P].2020-08-28. CHAI Y N,LI C,CHEN L M,et al.The utility model relates to a pressure shear test device for flat panel:CN111595699A[P].2020-08-28(in Chinese).
[37] 孙侠生.飞机结构强度新技术[M].北京:航空工业出版社, 2017. SUN X S.New technology of aircraft structural strength[M].Beijing:Aviation Industry Press, 2017(in Chinese).
[38] ACCARDO A, RICCI F, LUCARIELLO D, et al.Design of a combined loads machine for tests on fuselage barrels and curved panels[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Reston:AIAA, 2004:1628.
[39] ROUSE M.Methodologies for combined loads tests using a multi-actuator test machine[M]//Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6.Cham:Springer International Publishing, 2013:205-214.
[40] ANDREW E L.Configuration and sizing of a test fixture for panels under combined loads:NASA/CR-2006-214520[R].Washington,D.C.:NASA,2006.
[41] ROUSE M, JEGLEY, D.Preparation for testing a multi-bay box subjected to combined loads:NF1676L-20919[R].Washington, D.C.:NASA, 2016.
[42] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al.Testing and analysis of a composite non-cylindrical aircraft fuselage structure, part I:Ultimate design loads[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2016:2176.
[43] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al.Testing and analysis of a composite non-cylindrical aircraft fuselage structure, part II:severe damage[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2016:2177.
[44] AMBUR D, CERRO J, DICKSON J.Analysis of a D-box fixture for testing curved stiffened aircraft fuselage panels in axial compression and internal pressure[C]//35th Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 1994:309-319.
[45] AMBUR D A, ROUSE M, STARNES J H,et al.Facilities for combined loads testing of aircraft structures to satisfy structural technology development requirements[C]//The 5th Annual Advanced Composites Technology Conference, 1994.
[46] ANBUR D R, CERRO J A, DICKSON J.D-box fixture for testing stiffened panels in compression and pressure[J].Journal of Aircraft, 1995, 32(6):1382-1389.
[47] ROUSE M, YOUNG R, GEHRKI R.Structural stability of a stiffened aluminum fuselage panel subjected to combined mechanical and internal pressure[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2003.
[48] AMBUR D R, ROUSE M.Design and evaluation of composite fuselage panels subjected to combined loading conditions[J].Journal of Aircraft, 2005, 42(4):1037-1045.
[49] AMBUR D, ROUSE M, YOUNG R, et al.Evaluation of an aluminum fuselage panel with discrete-source damage and subjected to combined loading conditions[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit.Reston:AIAA, 1999.
[50] BAKUCKAS J G.Full-scale testing and analysis of fuselage structure containing multiple cracks:DOT/FAA/AR-01/46[R].Washington,D.C.:FAA,2002.
[51] GOULD K, LOVEJOY A E, JEGLEY D, et al.Nonlinear analysis and experimental behavior of a curved unitized stitched panel[J].Journal of Aircraft, 2014, 52(2):628-637.
[52] BERGAN A, BAKUCKAS J G, LOVEJOY A, et al.Full-scale test and analysis of a prseus fuselage panel to assess damage-containment features[C]//Aircraft Airworthiness & Sustainment Conference, 2011.
[53] LEONE F A, BAKUCKAS J G, SHYPRYKEVICH P,et al.Structural testing and analysis of honeycomb sandwich composite fuselage panels:DOT/FAA/AR-08/51[R].Washington,D.C.:FAA,2008.
[54] DAVID W, CONG D, JEFF T, et al.Bonded composite repair of curved fuselage panels and panels with large compressions loads[C]//11th Joint FAA/DoD/NASA Aging Aircraft Conference, Washington,D.C.:FAA,2008.
[55] The Boeing Company.E-fixture:US7246527B2[P].2007-07-24.
[56] VERCAMMEN R W A, OTTENS H H.Full-scale GLARE fuselage top-panel test:CR 96301 C[R].Amsterdam:NLR, 1996.
[57] VERCAMMEN R W A, OTTENS H H.Full-scale GLARE fuselage panel tests:TP 97278 U[R].Amsterdam:NLR,1997.
[58] VERCAMMEN R W A, OTTENS H H.Full-scale fuselage panel tests:TP-98148[R].Amsterdam:NLR,1998.
[59] IMA.The number one address for structural and material testing in the aerospace industry[EB/OL].https://www.ima-dresden.de/en/service-portfolio/focus-industries/aerospace/
[60] 臧伟锋, 陈安, 董登科.机身壁板内压载荷试验研究[J].航空工程进展, 2018, 9(1):69-76. ZANG W F, CHEN A, DONG D K.Test research on fuselage panel subjected to internal pressure load[J].Advances in Aeronautical Science and Engineering, 2018, 9(1):69-76(in Chinese).
[61] 臧伟锋, 董登科, 张海英.机身壁板内压载荷强度试验方法研究[J].机械强度, 2015, 37(5):972-977. ZANG W F, DONG D K, ZHANG H Y.Research on test method of fuselage panel subjected to internal pressure load[J].Journal of Mechanical Strength, 2015, 37(5):972-977(in Chinese).
[62] 臧伟锋, 苏少普, 张海英, 等.机身壁板剪切试验方法研究[J].机械强度, 2017, 39(6):1310-1314. ZANG W F, SU S P, ZHANG H Y, et al.Research on test method of fuselage panel subjected to shear load[J].Journal of Mechanical Strength, 2017, 39(6):1310-1314(in Chinese).
[63] 中国飞机强度研究所.一种机身壁板复合载荷试验装置:CN201510221528.6[P].2015-07-29. Aircraft Strength Research Institute of China.A composite load testfacility for fuselage panel:CN201510221528.6[P].2015-07-29(in Chinese).
[64] 中国飞机强度研究所.一种飞机大型壁板剪切加载装置:CN201510243266.3[P].2015-11-11. Aircraft Strength Research Institute of China.A shear loadingfacility for large aircraft panel:CN201510243266.3[P].2015-11-11(in Chinese).
[65] 中国飞机强度研究所.一种曲板气密、压缩载荷试验装置:CN201510240070.9[P].2015-07-29. Aircraft Strength Research Institute of China.A curved panelair pressurization and compression load test facility:CN201510240070.9[P].2015-07-29(in Chinese).
[66] 邓凡臣,柴亚南,薛会民,等.大型飞机机身曲板多轴载荷试验技术研究[J].实验力学, 2018, 33(3):484-490. DENG F C, CHAI Y N, XUE H M, et al.On the experimental technique for large aircraft fuselage curved panel subjected to multiaxial loading[J].Journal of Experimental Mechanics, 2018, 33(3):484-490(in Chinese).
[67] 陈丽敏,柴亚南,李崇,等.机身壁板复合加载试验平台研发[J].工程与试验, 2017, 57(4):74-77. CHEN L M, CHAI Y N, LI C,et al.Development of combined loading test platform for fuselage panel[J].Engineering & Test, 2017, 57(4):74-77(in Chinese).
[68] 中国飞机强度研究所.一种曲板直边约束加载装置:CN202010554450.0[P].2020-10-13. Aircraft Strength Research Institute of China.A loading device with straight edge constraint for curved panel:CN202010554450.0[P].2020-10-13(in Chinese).
[69] 李真, 王俊, 邓凡臣,等.复合材料机身壁板的强度分析、试验及验证[J].航空学报,2020,41(9):223688. LI Z, WANG J, DENG F C, et al.Strength analysis, test and verification of composite fuselage panels[J].Acta Aeronautica et Astronautica Sinica,2020,41(9):223688(in Chinese).
Outlines

/