Fluid Mechanics and Flight Mechanics

Hypersonic separation simulation of aerocraft similar to X-43A

  • ZHAO Fei ,
  • LIU Liling ,
  • SHI Yong ,
  • ZUO Guang ,
  • WAN Qian ,
  • ZHANG Yujia
Expand
  • 1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China;
    2. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Received date: 2020-12-28

  Revised date: 2021-01-12

  Online published: 2021-02-02

Supported by

National Natural Science Foundation of China (11802015,41806209)

Abstract

Stage separation process widely exists in the military and aerospace applications of hypersonic aerocraft. To further understand the aerodynamic interference and parameter effects in the process, an aerocraft similar to X-43A is chosen as the research object, and the simulation method of mesh deformation/local grid reconstruction adopted. The typical flow field structure, particularly the interstage interference between the aerocraft and the assistor, during the separation process is analysed. Additionally, the influences of the initial angle of attack and ejection force on the axial and normal relative distance, aerodynamic force and the angle of attack during the separation process are emphatically discussed. The results show that the interstage separation process is disturbed by the vortex and shock waves. The angle of attack has a large effect on the relative distance between the aerocraft and the assistor, and a small or negative angle of attack is more helpful for the safe separation. The ejection force has a significant influence on the axial relative distance, and a larger ejection force enables faster separation of the aerocraft from the interstage interference zone to reach a safe separation distance.

Cite this article

ZHAO Fei , LIU Liling , SHI Yong , ZUO Guang , WAN Qian , ZHANG Yujia . Hypersonic separation simulation of aerocraft similar to X-43A[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 125171 -125171 . DOI: 10.7527/S1000-6893.2021.25171

References

[1] 林敬周, 王雄, 钟俊, 等. 高马赫数多体分离试验技术研究与应用[J]. 推进技术, 2020, 41(4):925-933. LIN J Z, WANG X, ZHONG J,et al. Investigation and application of high Mach number multi-body separation test technique[J]. Journal of Propulsion Technology, 2020, 41(4):925-933(in Chinese).
[2] 张文普, 丰镇平. 级间分离的流场及热流分析研究[J]. 推进技术, 2003, 24(3):240-243. ZHANG W P, FENG Z P. Numerical simulation of flow field and thermal analysis for stage separation of multistage missile[J]. Journal of Propulsion Technology, 2003, 24(3):240-243(in Chinese).
[3] 刘君, 徐春光, 郭正. 多级火箭级间分离流动特性的数值模拟[J]. 推进技术, 2002, 23(4):265-267. LIU J, XU C G, GUO Z. Numerical simulation on the stage-separation flow fields of the multi-stage rocket[J]. Journal of Propulsion Technology, 2002,23(4):265-267(in Chinese).
[4] MURPHY K, SCALLION W. Experimental stage separation tool development in NASA langley's aerothermodynamics laboratory[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2005.
[5] CENKO A. Lessons learned in 30 years of store separation testing[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[6] PINIER J, NISKEY C. AresI and Ares I-X stage separation aerodynamic testing[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[7] GARCON F, TARAVEL P, RAFFIN J C. Recent developments in captive trajectory systems of the ONERA Modane wind tunnels[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[8] 秦永明, 田晓虎, 董金刚, 等. 串联布局飞行器级间冷分离气动特性研究[J]. 实验流体力学, 2014, 28(1):38-43. QIN Y M, TIAN X H, DONG J G, et al. Investigation on aerodynamic characteristics at stage separation of tandem layout vehicle[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):38-43(in Chinese).
[9] 王元靖, 吴继飞, 陶洋, 等. 高超声速多体干扰与分离试验[J]. 航空动力学报, 2010, 25(4):902-906. WANG Y J,WU J F, TAO Y, et al. Hypersonic experimental investigation on interference and stage separation of a multi-body system[J]. Journal of Aerospace Power, 2010, 25(4):902-906(in Chinese).
[10] 宋威, 艾邦成, 蒋增辉, 等. 内埋武器投放分离相容性的风洞投放试验预测与评估[J]. 航空学报, 2020, 41(6):523415. SONG W, AI B C, JIANG Z H, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523415(in Chinese).
[11] 李骞, 杨俊, 谢云恺, 等. 超声速内埋武器不同分离方式分析[J]. 航空计算技术, 2014, 44(5):69-72. LIQ, YANG J, XIE Y K, et al. Simulation of different separation modes of internal weapon at supersonic speed[J]. Aeronautical Computing Technique, 2014, 44(5):69-72(in Chinese).
[12] 解福田, 林敬周, 钟俊, 等. 高超声速带喷流级间分离试验中腹支撑干扰影响特性研究[J]. 实验流体力学, 2015, 29(6):16-20. XIE F T, LIN J Z, ZHONG J, et al. Investigation of support interaction in stage separation experiment with jet in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6):16-20(in Chinese).
[13] 吴继飞, 王元靖, 罗新福, 等. 高超声速风洞多体干扰与分离试验技术[J]. 实验流体力学, 2010, 24(3):99-102. WU J F, WANG Y J, LUO X F, et al. A test technique for multi-boby interference and separation in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):99-102(in Chinese).
[14] 武利龙, 操小龙, 王靖, 等. 飞行器级间段跨声速脉动压力特性试验[J]. 航空学报, 2019, 40(8):122815. WU L L, CAO X L, WANG J, et al. Pressure fluctuation laws test on interstage section of flight vehicle at transonic speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122815(in Chinese).
[15] 王志坚, 伍贻兆, 林敬周. 某运载火箭级间分离喷流干扰风洞试验研究[J]. 实验流体力学, 2009, 23(2):15-19. WANG Z J, WU Y Z, LIN J Z. Wind tunnel test on effect of the jet flow interaction on stage separation of launch vehicle[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2):15-19(in Chinese).
[16] 周伟江, 白鹏, 马汉东. 弹体级间分离流场特性的数值模拟研究[J]. 计算物理, 2000, 17(5):532-536. ZHOU W J, BAI P, MA H D. The numerical study offlowfields around a separating missile[J]. Chinese Journal of Computation Physics, 2000, 17(5):532-536(in Chinese).
[17] ENGELUND W C, HOLLAND S D, COCKRELL C E, et al. Aerodynamic database development for the hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6):803-810.
[18] 闻讯, 柳军, 夏智勋. 吸气式高超声速飞行器助推分离过程数值仿真[J]. 国防科技大学学报, 2019, 41(1):34-40. WEN X, LIU J, XIA Z X. Numerical simulation of booster separation for an air-breathing hypersonic vehicle[J]. Journal of National University of Defense Technology, 2019, 41(1):34-40(in Chinese).
[19] 郭庆阳. 高超声速飞行器级间分离非定常数值研究[D]. 长沙:国防科学技术大学, 2012. GUO Q Y. The unsteady numerical simulation research on the stage separation of hypersonic vehicle[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[20] 贾如岩, 江振宇, 张为华. 火箭低空级间热分离初期流场特性数值模拟[J]. 宇航学报, 2015, 36(11):1310-1317. JIA R Y, JIANG Z Y, ZHANG W H. Numerical simulation of initial phase of multi-stage rocket stage separation at low altitude[J]. Journal of Astronautics, 2015, 36(11):1310-1317(in Chinese).
[21] 乔宇航, 石泳, 赵飞. 带级间连接托的高超声速飞行器分离干扰研究[J]. 航空计算技术, 2019, 49(6):14-17. QIAO Y H, SHI Y, ZHAO F. Study onseparation interference on hypersonic vehicle with bracket stage connector[J]. Aeronautical Computing Technique, 2019, 49(6):14-17(in Chinese).
[22] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
Outlines

/