Review

A review on development of intelligent health management technology for spacecraft control systems

  • YUAN Li ,
  • WANG Shuyi
Expand
  • 1. Beijing Institute of Control Engineering, Beijing 100094, China;
    2. Key Laboratory of Space Intelligent Control Technology, Beijing 100094, China

Received date: 2020-12-01

  Revised date: 2020-12-21

  Online published: 2021-01-26

Supported by

National Natural Science Foundation of China (61573060);National Defence Pre-research Foundation (6142208180101)

Abstract

As one of the key technologies for spacecraft intelligent autonomous control, health management is an effective way to improve the security, reliability and stability of spacecraft. Based on the development trend of artificial intelligence technology and the new general architecture of spacecraft intelligent autonomous control system that is developed by our team, this paper gives a review of the status and development trend of intelligent health management technology for spacecraft control system. First, the challenges of health management technology for spacecraft control systems in the process of design, test and in-orbit operation are presented. Then, the states of the art of the health management technology based on artificial intelligence and its applications in the aerospace field are discussed in terms of fault prognosis, fault diagnosis and life assessment. Finally, possible development directions of the health management technology for spacecraft control system are summarized.

Cite this article

YUAN Li , WANG Shuyi . A review on development of intelligent health management technology for spacecraft control systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 525044 -525044 . DOI: 10.7527/S1000-6893.2020.25044

References

[1] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1):1-3. ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):1-3(in Chinese).
[2] 包为民, 祁振强, 张玉. 智能控制技术发展的思考[J]. 中国科学:信息科学, 2020, 50(8):1267-1272. BAO W M, QI Z Q, ZHANG Y. Thoughts on the development of intelligent control technology[J]. SCIENTIA SINICA Informationis, 2020, 50(8):1267-1272(in Chinese).
[3] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021,42(11):525055. BAO W M. Space Intelligent control technology enables launch vehicle to "Self-Learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(11):525055(in Chinese).
[4] 中华人民共和国国务院. 新一代人工智能发展规划.[EB/OL]. http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm. The State Council of the People's Republic of China. New Generation Artificial Intelligence Development Plan[EB/OL]. http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm.
[5] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application2019, 45(4):7-18(in Chinese).
[6] SCHWABACHER M, SAMUELS J, BROWNSTON L. The NASA integrated vehicle health management technology experiment for X-37[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4733:49-60.
[7] 刘强, 周经伦, 金光, 等. 基于随机阈值的Gauss-Brown失效物理模型的动量轮可靠性评估[J]. 宇航学报, 2009, 30(5):2109-2115. LIU Q, ZHOU J L, JIN G, et al. The reliability estimation of the momentum wheel based on the stochastic threshold Gauss-Brown failure physics model[J]. Journal of Astronautics, 2009, 30(5):2109-2115(in Chinese).
[8] MCMAHON P, LAVèN R. Results from 10 years of reaction/momentum wheel life testing[C]//11th European Space Mechanisms and Tribology Symposium, 2005.
[9] 南熠. 基于有向图的航天器健康管理算法研究[D]. 哈尔滨:哈尔滨工业大学, 2014:53-70. NAN Y. Research on health management algorithm of spacecraft based on directed graph[D]. Harbin:Harbin Institute of Technology, 2014:53-70(in Chinese).
[10] 吕琛. 故障诊断与预测技术——原理、技术及应用[M]. 北京:北京航空航天大学出版社, 2012:262-265. LV S. Fault diagnosis and prediction techniques-Principles, techniques and applications[M]. Beijing:Beihang University Press, 2012:262-265(in Chinese).
[11] 郭小红, 徐小辉, 赵树强, 等. 基于新息灰预测的卫星遥测参数状态预测及应用[J]. 宇航学报, 2010, 31(8):1939-1943. GUO X H, XU X H, ZHAO S Q, et al. Satellite telemetry parameter trend forecast algorithm based on new information and applications[J]. Journal of Astronautics, 2010, 31(8):1939-1943(in Chinese).
[12] CHONLAGRN I,ALI M,MOHAMMAD M. Computational algorithm for dynamic hybrid bayesian network in on-line system health management applications[C]//2014 International Conference on Prognostics and Health Management, 2014.
[13] COLANTONIO S,DI B M, PIERI G,et al. System health state monitoring using multilevel artificial neural networks[C]//2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. Piscataway:IEEE Press, 2005:50-55.
[14] SURESH K,SRINIVASAN R,AMARESH N,et al. Modeling of various phases of micro satellite using timed petri nets[C]//2007 International Conference on Signal Processing, Communications and Networking, 2007:195-198.
[15] 朱丽莎, 姜斌, 程月华, 等. 一种卫星遥测参数动态ARMA建模方法[J]. 航天控制, 2017, 35(2):37-43. ZHU L S, JIANG B, CHENG Y H, et al. A dynamic ARMA modeling method for satellite telemetry data[J]. Aerospace Control, 2017, 35(2):37-43(in Chinese).
[16] LOSIK L. Stopping launch pad delays, launch failure, satellite infant mortalities and on-orbit satellite failure using telemetry prognostic technology[C]//Proceedings of the International Telemetry Conference, 2007.
[17] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3):481-495. PENG Y, LIU D T. Data-driven prognostics and health management:A review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):481-495(in Chinese).
[18] DAI C L, PI D C, FANG Z, et al. A novel long-term prediction model for hemispherical resonator gyroscope's drift data[J]. IEEE Sensors Journal, 2014, 14(6):1886-1897.
[19] GAO Y, YANG T, LI W, et al. State trend prediction of spacecraft using PSO-SVR[J]. Lecture Notes in Electrical Engineering, 2014, 323:337-345.
[20] LIU M, LU N, CHENG Y, et al. Data-based incipient fault detection and prediction for satellite's attitude control system[C]//IEEE Control and Decision Conference. Piscataway:IEEE Press, 2017:1202-1207.
[21] LEN L. Results from the prognostic analysis completed on the NASA extreme ultra violet explore satellite[C]//2012 IEEE Aerospace Conference. Piscataway:IEEE Press, 2012:1-16.
[22] JOSE-ANTONIO M, ALESSANDRO D, BRUNO S, et al. DrMUST-a data mining approach for anomaly investigation[C]//Proceedings of the SpaceOps 2012 Conference. Piscataway:IEEE Press, 2012:11-15.
[23] ELSAID A E, WILD B, HIGGINS J, et al. Using LSTM recurrent neural networks to predict excess vibration events in aircraft engines[C]//2016 IEEE 12th International Conference on e-Science (e-Science). Piscataway:IEEE Press, 2016.
[24] SARY C, PETERSON C, ROWE J, et al. Trend analysis for spacecraft systems using multimodal reasoning:Technical Report SS-98-04[R]. Greenbelt:AAAI, 1998:157-162.
[25] WINTOFT P, LUNDSTEDT H, ELIASSON L, et al. Spacecraft anomaly analysis and prediction system-SAAPS[C]//Proceedings of the 7th International Conference, 2001:169-176.
[26] KIRSCH M G F, AIREY S, CHAPMAN P, et al. Bearing noise detection, modeling and mitigation measures on ESA's X-ray observatory XMM-NEWTON[C]//2014 GN&C Conference, 2014:827-838.
[27] TAKAKI R, HASHIMOTO M, HONDA H, et al. ISACS-DOC automatic monitoring and diagnostic system for spacecraft[C]//The 6th International Symposium on Reducing the Costs of Spacecraft Ground Systems & Operations, 2005.
[28] HUNDMAN K,CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//The 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2018.
[29] DALY K C,GAI E,HARRISON J V.Generalized likelihood test for FDI in redundant sensor configurations[J]. Journal of Guidance and Control, 1979, 2(1):9-17.
[30] 邢琰, 吴宏鑫, 王晓磊, 等. 航天器故障诊断与容错控制技术综述[J] 宇航学报, 2003, 24(3):221-226. XING Y, WU H X, WANG X L, et al. Survey of fault diagnosis and fault-tolerant control technology for spacecraft[J]. Journal of Astronautics, 2003, 24(3):221-226(in Chinese).
[31] ZOLGHADRI A. Advanced model-based FDIR techniques for aerospace systems:Today challenges and opportunities[J]. Progress in Aerospace Sciences, 2012, 53:18-29.
[32] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320.
[33] 王大轶, 屠园园, 符方舟, 等. 航天器控制系统的自主诊断重构技术[J]. 控制理论与应用, 2019, 36(12):1966-1978. WANG D Y, TU Y Y, FU F Z, et al. Autonomous diagnosis and reconfiguration technology of spacecraft control system[J]. Control Theory & Applications, 2019, 36(12):1966-1978(in Chinese).
[34] WILLIAMSON W R, SPEYER J L, DANG V T, et al. Fault detection and isolation for deep space satellites[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1570-1584.
[35] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese).
[36] PATTON R J, FRANK P M, CLARK R N. Issues of fault diagnosis for dynamic systems[M]. London:Springer-Verlag, 2000:1-12.
[37] FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy a survey and some new results[J]. Automatica, 1990, 26(3):459-474.
[38] FRANK P M. Analytical and qualitative model-based fault diagnosis a survey and some new results[J]. European Journal of Control, 1996, 2(1):6-28.
[39] MARZAT J, PIET-LAHANIER H, DAMONGEOT F, et al. Model-based fault diagnosis for aerospace systems:a survey[J]. Journal of Aerospace Engineering, 2012, 226(10):1329-1360.
[40] 邢琰, 魏春岭. 基于四元数估计角速率的陀螺故障定位[J]. 宇航学报, 2003, 24(4):410-413. XING Y, WEI C L. Fault location of single redundant gyroscopes based on estimated angular rate using quaternion[J]. Journal of Astronautics, 2003, 24(4):410-413(in Chinese).
[41] 邢琰, 吴宏鑫. 一种红外地球敏感器和陀螺的故障隔离方法[J]. 计算技术与自动化, 2003, 22(2):74-76. XING Y, WU H X. A fault isolation method for infrared Earth sensors and gyroscopes[J]. Computing Technology and Automation, 2003, 22(2):74-76(in Chinese).
[42] BOSKOVIC J D, BERGSTROM S E, MEHRA R K. Robust integrated flight control design under failures, damage, and state-dependent disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28:902-917.
[43] CHEN W, SAIF M. Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults[J]. Journal of Dynamic Systems Measurement and Control, 2007, 129(3):352-356.
[44] XIONG K, CHAN C W, ZHANG H Y. Detection of satellite attitude sensor faults using the UKF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2):480-491.
[45] TUDOROIU N, KHORASANI K. Satellite fault diagnosis using a bank of interacting Kalman filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1334-1350.
[46] HENRY D. Fault diagnosis of microscope satellite thrusters using H-infinity/H-filters[J]. Journal of Guidance, Control, and Dynamics, 2008, 31:699-711.
[47] PIRMORADI F N, SASSANI F, SILVA C W D. Fault detection and diagnosis in a spacecraft attitude determination system[J]. Acta Astronautica, 2009, 65(5-6):710-729.
[48] GAO Z F,JIANG B, SHI P, et al. Sensor fault estimation and compensation for microsatellite attitude control systems[J]. International Journal of Control Automation and Systems, 2010, 8(2):228-237.
[49] ALWI H, EDWARDS C, MARCOS A. FDI for a Mars orbiting satellite based on a sliding mode observer scheme[C]//IEEE 2010 Conference on Control and Fault Tolerant Systems. Piscataway:IEEE Press, 2010:125-130.
[50] GAO C, ZHAO Q, DUAN G R. Robust actuator fault diagnosis scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9):2560-2580.
[51] ZHANG J, SWAIN A K, NGUANG S K. Robust sensor fault estimation scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9):2581-2604.
[52] 李文博, 王大轶, 刘成瑞. 动态系统实际故障可诊断性的量化评价研究[J]. 自动化学报, 2015, 41(3):497-507. LI W B, WANG D Y, LIU C R. Quantitative evaluation of actual fault diagnosability for dynamic systems[J]. Acta Automatica Sinica, 2015, 41(3):497-507(in Chinese).
[53] 汤文涛, 王振华, 王烨, 等. 基于未知输入集员滤波器的不确定系统故障诊断[J]. 自动化学报, 2018, 44(9):1717-1724. TANG W T, WANG Z H, WANG Y, et al. Fault diagnosis for uncertain systems based on unknown input set-membership filters[J]. Acta Automatica Sinica, 2018, 44(9):1717-1724(in Chinese).
[54] ZHONG M Y, LIU C R, ZHOU D H, et al. Probability analysis of fault diagnosis performance for satellite attitude control systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11):5867-5876.
[55] 李利亮,牛睿,邵志杰,等. 基于专用卡尔曼滤波器思想的陀螺故障诊断[J]. 控制理论与应用, 2019, 36(9):1501-1508. LI L L, NIU R, SHAO Z J, et al. Gyroscope fault diagnosis based on dedicated Kalman filter scheme[J]. Control Theory & Applications, 2019, 36(9):1501-1508(in Chinese).
[56] WANG D Y, FU F Z, LI W B, et al. A review of the diagnosability of control systems with applications to spacecraft[J]. Annual Reviews in Control, 2020, 49:212-229.
[57] RAHIMI A, KUMAR K D, ALIGHANBARI H. Fault isolation of reaction wheels for satellite attitude control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1):610-629.
[58] 郝慧, 王南华. 基于小波分析的航天器姿态控制系统故障诊断方法研究[J]. 航天控制, 2005, 23(5):73-78. HAO H, WANG N H. Research on wavelet analysis based fault diagnosis for attitude control subsystem of spacecraft[J]. Aerospace Control, 2005, 23(5):73-78(in Chinese).
[59] WU Q, SAIF M. Robust fault detection and diagnosis for a multiple satellite formation flying system using second order sliding mode and wavelet networks[C]//2007 American Control Conference, 2007:426-431.
[60] 王振华, 沈毅, 张筱磊. 基于等价关系和经验模态分解的卫星陀螺故障诊断方法[J]. 南京理工大学学报, 2011, 35(S2):127-131. WANG Z H, SHEN Y, ZHANG X L. Satellite gyro-scope fault diagnosis based on parity relation and empirical mode decomposition[J]. Journal of Nanjing University of Science and Technology, 2011, 35(S2):127-131(in Chinese).
[61] ALI A, SCHARNHORST D A, AI C S, et al. A flight expert system (FLES) for on-board fault monitoring and diagnosis[C]//Proceeding of SPIE, 1986:58-61.
[62] 王南华, 倪行震, 李丹, 等. 卫星控制系统地面实时故障诊断专家系统SCRDES[J]. 航天控制, 1991, 9(3):37-44. WANG N H, NI X Z, LI D, et al. An on-ground real-time fault diagnosis expert system for the satellite attitude control system (SCRDES)[J]. Aerospace Control, 1991, 9(3):37-44(in Chinese).
[63] 谢敏, 楼鑫, 罗芊. 航天器故障诊断技术综述及发展趋势[J]. 软件, 2016, 37(7):70-74. XIE M, LOU X, LUO Q. Reviewed and developing trend of spacecraft fault diagnosis technology[J]. Computer Engineering & Software, 2016, 37(7):70-74(in Chinese).
[64] 苏林, 尚朝轩, 刘文静. 航天器姿态控制系统故障诊断方法概述[J]. 长春理工大学学报(自然科学版), 2010, 33(4):23-27. SU L, SHANG C X, LIU W J. Survey on the technology of fault diagnosis for spacecraft attitude control system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2010, 33(4):23-27(in Chinese).
[65] WU Q, SAIF M. Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer[C]//2006 American Control Conference, 2006:5710-5715.
[66] TALEBI H A, KHORASANI K, TAFAZOLI S. A recur-rent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem[J]. IEEE Transactions on Neural Networks, 2009, 20(1):45-60.
[67] HUANG Y, LI S, SUN J. Mars entry fault-tolerant control via neural network and structure adaptive model inversion[J]. Advances in Space Research, 2019, 63(1):557-571.
[68] LI Z Q, MA L, KHORASANI K. A dynamic neural network-based reaction wheel fault diagnosis for satellites[C]//International Joint Conference on Neural Networks, 2006:3714-3721.
[69] GAO S, ZHANG W, HE X, et al. Neural network-based fault diagnosis scheme for satellite attitude control system[C]//2018 Chinese Control And Decision Conference (CCDC), 2018:3990-3995.
[70] CHENG Y, WANG R X, XU M Q. A combined model-based and intelligent method for small fault detection and isolation of actuators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2403-2413.
[71] SANDRA C H,ADAM J S. Livingstone model-based diagnosis of earth observing One[C]//AIAA 1 st Intelligent Systems Technical Conference. Reston:AIAA, 2004:1-11.
[72] 高伟, 邢琰, 王南华. 基于定性模型的故障诊断方法[J]. 空间控制技术与应用, 2009, 35(1):25-29. GAO W, XING Y, WANG N H. Fault diagnosis approach based on qualitative model[J]. Aerospace Control and Application, 2009, 35(1):25-29(in Chinese).
[73] 晏政. 航天器推进系统基于定性模型的故障诊断方法研究[D]. 长沙:国防科学技术大学, 2013:7-24. YAN Z. Investigation on model-based fault diagnosis methods for spacecraft propulsion system[D]. Changsha:National University of Defense Technology, 2013:7-24(in Chinese).
[74] LI Z, LIU G, ZHANG R, et al. Fault detection, identification and reconstruction for gyroscope in satellite based on independent component analysis[J]. Acta Astronautica, 2011, 68(7-8):1015-1023.
[75] HU D, SAROSH A, DONG Y F. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels[J]. ISA Transactions, 2012, 51:309-316.
[76] 黄旭星, 李爽, 孙盼, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4):524201. HUANG X X, LI S, SUN P, et al. Review of spacecraft guidance and control based on artificial intelligence[J/OL]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201(in Chinese).
[77] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7):27-34. JIANG H K, SHAO H D, LI X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7):27-34(in Chinese).
[78] ORTIZ N, HERNáNDEZ R D, JIMENEZ R, et al, Survey of biometric pattern recognition via machine learning techniques[J]. Contemporary Engineering Sciences, 2018, 11(34):1677-1694.
[79] TOMS D,HADDEN G D, HARRINGTON J. Attitude determination and control system(ADCS) and maintenance and diagnostic system(MDS):A maintenance and diagnostic system for Space Station Freedom[C]//The 5th Conference on Artificial Intelligence for Space Applications, 1990:175-184.
[80] MENDONA L F, SOUSA J M C, COSTA K M G S D. An architecture for fault detection and isolation based on fuzzy methods[J]. Expert Systems with Applications, 2009, 36(2):1092-1104.
[81] SMART FDIR Project Team. SMART FDIR final report:SD-RP-AI-0378[R]. Turin:ALENIA SPAZIO S.p.A., 2003.
[82] 姜连祥, 李华旺, 杨根庆, 等. 航天器自主故障诊断技术研究进展[J]. 宇航学报, 2009, 30(4):1320-1326. JIANG L X, LI H W, YANG G Q, et al. A survey of spacecraft autonomous fault diagnosis research[J]. Journal of Astronautics, 2009, 30(4):1320-1326(in Chinese).
[83] 唐圣金, 郭晓松, 司小胜, 等. 基于维纳过程的卫星用光纤陀螺剩余寿命预测[J]. 红外与激光工程, 2013, 42(12):3347-3352. TANG S J, GUO X S, SI X S, et al. Remaining useful life prediction of FOGs used for satellite based on Wiener process[J]. Infrared and Laser Engineering, 2013, 42(12):3347-3352(in Chinese).
[84] LI H, PAN D, CHEN C L P. Reliability modeling and life estimation using an expectation maximization based wiener degradation model for momentum wheels[J]. IEEE Transactions on Cybernetics, 2015, 45(5):969-977.
[85] ZHU L S, JIANG B, CHENG Y H. Life prediction methods based on data-driven:Review and trend[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, Piscataway:IEEE Press, 2016:1682-1686.
[86] 郝旭东. 基于RVM-PF的卫星关键部件寿命预测[D]. 长沙:国防科学技术大学, 2011:5-7. HAO X D. Life prediction of satellite key components based on RVM-PF[D]. Changsha:National University of Defense Technology, 2011:5-7(in Chinese).
[87] 张建勋, 胡昌华, 周志杰, 等. 多退化变量下基于Copula函数的陀螺仪剩余寿命预测方法[J]. 航空学报, 2014, 35(4):1111-1121. ZHANG J X, HU C H, ZHOU Z J, et al. Multiple degradation variables modeling for remaining useful life estimation of gyros based on copula function[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1111-1121(in Chinese).
[88] 刘胜南, 陆宁云, 程月华, 等. 基于多退化量的动量轮剩余寿命预测方法[J]. 南京航空航天大学学报, 2015, 47(3):360-366. LIU S N, LU N Y, CHENG Y H, et al. Remaining life-time prediction for momentum wheel based on multiple degradation parameters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(3):360-366(in Chinese).
[89] 丁瑞, 陆宁云, 程月华, 等. 基于D-S证据理论的航天设备寿命预测方法[J]. 中国空间科学技术, 2016, 36(4):58-66. DING R, LU N Y, CHENG Y H, et al. Lifetime prediction of aerospace equipment based on D-S evidence theory[J]. Chinese Space Science and Technology, 2016, 36(4):58-66(in Chinese).
[90] HU C, YOUN B D, WANG P, et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering & System Safety, 2012, 103:120-135.
[91] LIU Z, LI Q, MU C. A hybrid LSSVR-HMM based prognostics approach[C]//The 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012:275-278.
[92] QI H M, CHENG Y H, JIANG B, et al. The residual life prediction of the satellite attitude control system based on Petri net[C]//2014 Prognostics and System Health Management Conference, 2014:266-270.
[93] 田静. 基于动态故障树的卫星姿态控制系统寿命预测方法研究[D]. 南京:南京航空航天大学, 2016:67-82. TIAN J. Research on prediction of residual use life for attitude control system of satellite based on dynamic fault tree[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:67-82(in Chinese).
[94] 祁海铭, 程月华, 姜斌, 等. 基于多状态故障的卫星姿态控制系统剩余寿命预测方法[J]. 南京航空航天大学学报, 2015, 47(1):29-36. QI H M, CHENG Y H, JIANG B, et al. Residual life prediction of satellite attitude control system based on multistate failures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1):29-36(in Chinese).
[95] CASTET J F, SALEH J H. Single versus mixture Weibull distributions for nonparametric satellite reliability[J]. Reliability Engineering & System Safety, 2010, 95(3):295-300.
[96] CASTANEDA G A P, AUBRY J F, BRINZEI N. Stochastic hybrid automata model for dynamic reliability assessment[J]. Journal of Risk and Reliability, 2011, 225(1):28-41.
[97] FISCHER P M, LUDTKE D, LANGE C, et al. Implementing model-based system engineering for the whole lifecycle of a spacecraft[J]. CEAS Space Journal, 2017, 9(3):351-365.
[98] LIU X, GUO J, GILL E. Towards model-driven development of AOCS/GNC for small satellite missions[C]//The 65th International Astronautical Congress (IAC), 2014.
[99] TAO F, SUI F, LIU A, et al. Digital twin-driven prod-uct design framework[J]. International Journal of Production Research, 2019, 57(12):3935-3953.
[100] TUEGEL E J. The airframe digital twin:some challenges to realization[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012.
[101] CAI Y, STARLY B, COHEN P, et a1.Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing[C]//Proceedings of the 45th SME North American Manufacturing Research Conference, 2017:1031-1042.
[102] 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26(3):565-588. LIU W R, TAO F, CHENG J F, et al. Digital twin satellite:concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3):565-588(in Chinese).
Outlines

/