Solid Mechanics and Vehicle Conceptual Design

Effects of distributed electric propulsion jet on aerodynamic performance of rear wing

  • ZHANG Yang ,
  • ZHOU Zhou ,
  • GUO Jiahao
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-11-17

  Revised date: 2020-12-21

  Online published: 2021-01-21

Supported by

Key R & D Project of Shaanxi Province (2021ZDLGY09-08); Taicang Innovation Leading Institute Project (TC2018-DYDS24)

Abstract

Based on the research of the Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) with Distributed Electric Propulsion (DEP), high-precision quasi-steady numerical simulation of the jet flow aerodynamic effects of different DEP-wing configurations are conducted using the Reynolds-Averaged Navier-Stokes (RANS) equations of the Multiple Reference Frame (MRF)/Momentum Source Method (MSM) based on the hybrid grid technology and k-ω SST turbulence model. The reliability and efficiency of the numerical method under the zero-velocity freestream condition are verified by the experiment of solo ducted fan/ducted fan and wing configurations. The aerodynamic advantages of the DEP-wing configuration are then analyzed. Finally, the rotating speed, spacing of the DEP and the rotating direction of the ducted fan are numerically simulated. Results show that the aerodynamic characteristics of the wing are significantly improved by the jet coupling effect of the DEP, compared with the solo ducted fan; the aerodynamic characteristics of the wing are similar at different rotating speeds of the DEP; the dynamic characteristics of the ducted fan will be improved with the increase of the spacing of the DEP, while those of the wing will be reduced; the reasonable rotation direction of the ducted fan enables smoother high pressure transition in the lower wing jet area and more continuous static pressure values; in addition, the inner ducted fan is motivated by the side jet flow, producing a better induction effect on the lift characteristics of the wing.

Cite this article

ZHANG Yang , ZHOU Zhou , GUO Jiahao . Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 224977 -224977 . DOI: 10.7527/S1000-6893.2020.24977

References

[1] 刘凯, 叶赋晨. 垂直起降飞行器的发展动态和趋势分析[J]. 航空工程进展, 2015, 6(2):127-138, 159. LIU K, YE F C. Review and analysis of recent developments for VTOL vehicles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2):127-138, 159(in Chinese).
[2] 张啸迟, 万志强, 章异嬴, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1):179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):179-192(in Chinese).
[3] KOHLMAN D L. Introduction to V/STOL airplanes[M]. Ames:Iowa State University Press, 1981.
[4] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway:IEEE, 2018:1-21.
[5] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3):624037. HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624037(in Chinese).
[6] NALIANDA D, SINGH R. Turbo-electric distributed propulsion-Opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):543-549.
[7] ZHANG Y, ZHOU Z, WANG K L, et al. Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers[J]. Applied Sciences, 2020, 10(5):1706.
[8] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).
[9] KIM H, LIOU M S. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674.
[10] LIOU M F, KIM H, LEE B J, et al. Aerodynamic design of integrated propulsion-airframe configuration of the hybrid wingbody aircraft:AIAA-2017-3411[R]. Reston:AIAA, 2017.
[11] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3):883-894.
[12] LUNDBLADH A. Distributed propulsion and turbo-fan scale effects[C]//17th Symposium on Airbreathing Engine, 2005.
[13] WICK A T, HOOKER J R, ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion:AIAA-2015-1500[R]. Reston:AIAA, 2015.
[14] PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6):2414-2426.
[15] KERHO M F. Aero-propulsive coupling of an embedded, distributed propulsion system:AIAA-2015-3162[R]. Reston:AIAA, 2015.
[16] MARCOS J, MARSHALL D. Computational and experimental comparison of a powered lift, upper surface blowing configuration:AIAA-2010-0502[R]. Reston:AIAA, 2010.
[17] MAITA M, TORISAKI T, MATSUKI M. Effect of side fences on powered-lift augmentation for USB configurations[J]. Journal of Aircraft, 1982, 19(5):364-367.
[18] 焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2):20-24. JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2):20-24(in Chinese).
[19] 龚志斌, 李杰, 蒋胜矩, 等. 大型运输机动力增升喷流效应数值模拟[J]. 航空动力学报, 2016, 31(8):1811-1819. GONG Z B, LI J, JIANG S J, et al. Numerical simulation of powered high-lift jet effects for large transport[J]. Journal of Aerospace Power, 2016, 31(8):1811-1819(in Chinese).
[20] 白俊强, 张晓亮, 刘南, 等. 考虑动力影响的大型运输机增升构型气动特性研究[J]. 空气动力学学报, 2014, 32(4):499-505. BAI J Q, ZHANG X L, LIU N, et al. The research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet[J]. Acta Aerodynamica Sinica, 2014, 32(4):499-505(in Chinese).
[21] LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4):1539-1551.
[22] ENGLAR R, BLAYLOCK G, GAETA R, et al. Recent experimental development of circulation control airfoils and pneumatic powered-lift systems:AIAA-2010-0345[R]. Reston:AIAA, 2010.
[23] PFINGSTEN K C, RADESPIEL R. Experimental and numerical investigation of a circulation control airfoil:AIAA-2009-0533[R]. Reston:AIAA, 2009.
[24] DUMAKUDE N, KAMPER M J. Validation of BEM using CFD MRF coupled with axial and radial induction factors:AIAA-2017-3484[R]. Reston:AIAA, 2017.
[25] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[26] RAJAGOPALAN R G, FANUCCI J B. Finite difference model for vertical axis wind turbines[J]. Journal of Propulsion and Power, 1985, 1(6):432-436.
[27] ZORI L A J, RAJAGOPALAN R G. Navier-Stokes calculations of rotor-airframe interaction in forward flight[J]. Journal of the American Helicopter Society, 1995, 40(2):57-67.
[28] CHAFFIN M S, BERRY J D. Navier-Stokes simulation of a rotor using a distributed pressure disk method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995.
[29] O'BRIEN D, SMITH M. Analysis of rotor-fuselage interactions using various rotor models:AIAA-2005-0468[R]. Reston:AIAA, 2005.
Outlines

/