Fluid Mechanics and Flight Mechanics

Dynamic modeling and simulation analysis of LOX/RP1 variable thrust engines using motor pump: Part I-single condition analysis

  • CUI Peng ,
  • SONG Jie ,
  • LI Qinglian ,
  • CHEN Lanwei ,
  • LIANG Tao ,
  • SUN Jun
Expand
  • Science and Technology on Scramjet Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China

Received date: 2020-10-16

  Revised date: 2021-01-21

  Online published: 2021-01-21

Supported by

Pre-research Project in Manned Space (050302)

Abstract

LOX/RP1 variable thrust liquid rocket engines using a motor pump have been widely studied in recent years because of their environmentally friendly performance, adjustable throttling depth and convenient adjustment. As a kind of variable thrust rocket engine, its system response characteristics are critical in directly determining the spacecraft maneuverability. However, previous research on the LOX/RP1 variable thrust engine using a motor pump mainly focuses on the system scheme design, and the dynamic analysis is relatively preliminary. In this paper, the response characteristics of the throttling system under different conditions and the variation of system performance parameters with the thrust level are studied by establishing a simulation platform of the LOX/RP1 variable thrust engine using a motor pump in consideration of the influence of the battery, motor and cooling channel. The results show that, although the response speed of the motor pump is fast, that of the cooling channel parameters is slow, leading to a short board effect. That is, the response time of the system performance parameters is ten times more than that of the motor pump speed. Contrarily, under low operating conditions, reducing the mixing ratio can ensure the smooth regulation of the thrust when the cooling channel outlet is in subcritical condition. Therefore, to improve the response characteristics of the system, the flow velocity in the cooling channel should be increased as much as possible when the pressure drop requirements are met.

Cite this article

CUI Peng , SONG Jie , LI Qinglian , CHEN Lanwei , LIANG Tao , SUN Jun . Dynamic modeling and simulation analysis of LOX/RP1 variable thrust engines using motor pump: Part I-single condition analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 124884 -124884 . DOI: 10.7527/S1000-6893.2021.24884

References

[1] YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2918-2923.
[2] CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling: A comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5): 897-923.
[3] DRESSLER G. Summary of deep throttling rocket engines with emphasis on Apollo LMDE[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
[4] CUI P, XU W W, LI Q L. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3[J]. Acta Astronautica, 2018, 142: 162-169.
[5] 雷娟萍, 兰晓辉, 章荣军, 等. 嫦娥三号探测器7500 N变推力发动机研制[J]. 中国科学: 技术科学, 2014, 44(6): 569-575. LEI J P, LAN X H, ZHANG R J,et al. The development of 7500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 569-575(in Chinese).
[6] GIULIANO V, LEONARD T, LYDA R, et al. CECE: expanding the envelope of deep throttling in liquid oxygen/liquid hydrogen rocket engines for NASA exploration missions[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
[7] GROMSKI J, MAJAMAKI A, CHIANESE S, et al. Northrop grumman TR202 LOX/GH2 deep throttling engine project status[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
[8] MOREHEAD R. Project Morpheus main engine development and preliminary flight testing[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
[9] MELCHER J C, MOREHEAD R L. Combustion stability characteristics of the project Morpheus liquid oxygen/liquid methane main engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014.
[10] JOHNSSON G, BIGERT M. Development of small centrifugal pumps for an electric propellant pump system[J]. Acta Astronautica, 1990, 21(6-7): 429-438.
[11] 翟一帆. 膨胀循环发动机推力调节过程动态仿真研究[D]. 北京: 中国航天科技集团公司第一研究院, 2017. ZHAI Y F. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2017(in Chinese).
[12] LEONARDI M, NASUTI F, DI MATTEO F, et al. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up[J]. Acta Astronautica, 2017, 139: 344-356.
[13] 李锦江. 一种低温发动机系统动态仿真的快捷方法[J]. 导弹与航天运载技术, 2012(1): 13-17. LI J J. An available technique for dynamic simulation of cryogenic rocket engines[J]. Missiles and Space Vehicles,2012(1): 13-17(in Chinese).
[14] 陈宏玉, 刘红军. 补燃循环发动机推力调节过程建模与仿真研究[J]. 火箭推进, 2014, 40(1): 18-24. CHEN H Y, LIU H J. Modeling and simulations on the thrust regulation process of staged combustion cycle rocket engine[J]. Journal of Rocket Propulsion, 2014, 40(1): 18-24(in Chinese).
[15] 李莹, 潘宏亮, 秦飞, 等. 基于EASY5的液发系统建模与仿真可行性研究[J]. 火箭推进, 2015, 41(1): 70-75. LI Y, PAN H L, QIN F,et al. Feasibility study on EASY5-based modeling and simulation of liquid rocket engine[J]. Journal of Rocket Propulsion, 2015, 41(1): 70-75(in Chinese).
[16] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209. TAN Y H, DU F P, CHEN J H,et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology, 2018, 39(6): 1201-1209(in Chinese).
[17] LEE K, CHA J, KO S, et al. Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J]. Acta Astronautica, 2018, 150: 15-27.
[18] SOLDÁ N, LENTINI D. Opportunities for a liquid rocket feed system based on electric pumps[J]. Journal of Propulsion and Power, 2008, 24(6): 1340-1346.
[19] RACHOV P A P, TACCA H, LENTINI D. Electric feed systems for liquid-propellant rockets[J]. Journal of Propulsion and Power, 2013, 29(5): 1171-1180.
[20] 王浩明, 程诚, 李小芳, 等. 液体火箭发动机电动泵系统发展及性能研究[J]. 火箭推进, 2019, 45(5): 1-7. WANG H M, CHENG C, LI X F,et al. Development and performance study of electrically driven pump system for liquid rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(5): 1-7(in Chinese).
[21] CUI P, LI Q L, CHENG P, et al. System scheme design for LOX/LCH4 variable thrust liquid rocket engines using motor pump[J]. Acta Astronautica, 2020, 171: 139-150.
[22] 刘洋, 付本帅, 杨建刚, 等. 电动泵压式液体火箭发动机系统建模与仿真[J]. 载人航天, 2019, 25(1): 107-115. LIU Y, FU B S, YANG J G,et al. System modeling and simulation of electric pump feed liquid propellant rocket engine[J]. Manned Spaceflight, 2019, 25(1): 107-115(in Chinese).
[23] 中国金属学会高温材料分会. 中国高温合金手册(上卷)[M].北京: 中国标准出版社, 2012. Academic Committee of the Superalloys, The Chinese Society for Metals. China superalloys handbook(volume I)[M]. Beijing: Standards Press of China, 2012(in Chinese).
[24] 张忠利, 张蒙正, 周立新. 液体火箭发动机热防护[M]. 北京: 国防工业出版社, 2016. ZHANG Z L, ZHANG M Z, ZHOU L X. Liquid rocket engine thermal protection[M]. Beijing: National Defense Industry Press, 2016(in Chinese).
[25] Simcenter Amesim 2019.1 Aircraft electrics library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019.
[26] Simcenter Amesim 2019.1 Electrical static conversion library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019.
[27] Simcenter Amesim 2019.1 Electric motors and drives library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019.
[28] Simcenter Amesim 2019.1 Two phase flow library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019.
[29] 张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005. ZHANG Y L, LIU K, CHENG M S. Dynamic theory and application of liquid rocket engine[M]. Beijing: Science Press, 2005(in Chinese).
[30] 刘上, 刘红军, 陈宏玉. 液体火箭发动机热力组件动力学模型[J]. 宇航学报, 2012, 33(10): 1512-1518. LIU S, LIU H J, CHEN H Y. Dynamics models for the combustor component in liquid rocket engine[J]. Journal of Astronautics, 2012, 33(10):1512-1518(in Chinese).
[31] 汪广旭, 郭灿琳, 石晓波, 等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术, 2016, 37(6): 1129-1135. WANG G X, GUO C L, SHI X B,et al. Analysis of longitudinal combustion instability based on time lag model[J]. Journal of Propulsion Technology, 2016, 37(6): 1129-1135(in Chinese).
[32] PÉREZ-ROCA S, MARZAT J, PIET-LAHANIER H, et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences, 2019, 107: 63-84.
[33] 汪洪波, 吴海燕, 谭建国. 推进系统动力学[M]. 北京: 科学出版社, 2018. WANG H B, WU H Y, TAN J G. Dynamics of propulsion systems[M]. Beijing: Science Press, 2018(in Chinese).
[34] LEONARDI M, MATTEO F D, STEELANT J, et al. System analysis of low frequency combustion instabilities in liquid rocket engines[C]//51 st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015.
[35] 许少聪. 液氧液甲烷姿轨控动力系统动态特性仿真研究[D]. 长沙: 国防科技大学, 2016. XU S C. Numerical analysis on dynamic characteristics of LOx/LCH4 space propulsion system for attitude and orbit control[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
[36] Simcenter Amesim 2019.1 Liquid propulsion library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019.
[37] HUANG D H, HUZEL D K. Modern engineering for design of liquid-propellant rocket engines[M]. Reston: AIAA, 1992.
[38] GNIELINSKI V. New equations for heat and mass-transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
[39] SHAH M M. General correlation for heat transfer during two-component gas-liquid flow in horizontal pipes[C]//Proceedings of ASME 2018 International Mechanical Engineering Congress and Exposition. New York: ASME, 2019.
[40] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应详细机理[J]. 航空动力学报, 2014, 29(12): 2810-2816. ZENG W, LI H X, MA H A, et al. Detailed chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Aerospace Power, 2014, 29(12): 2810-2816(in Chinese).
[41] 吴海龙, 聂万胜, 郑直, 等. 超临界环境两组分煤油替代物液滴的蒸发特性[J]. 导弹与航天运载技术, 2019(1): 54-58. WU H L, NIE W S, ZHENG Z,et al. Evaporation characteristic of bicomponent surrogate fuel for kerosene droplet in supercritical environment[J]. Missiles and Space Vehicles, 2019(1): 54-58(in Chinese).
Outlines

/