Article

Midcourse guidance for endo-atmospheric interception based on model predictive static programming

  • ZHOU Cong ,
  • YAN Xiaodong ,
  • TANG Shuo ,
  • LYU Shi
Expand
  • 1. School of Astronautics, Northwestern Ploytechnical University, Xi'an 710072, China;
    2. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710068, China

Received date: 2020-10-21

  Revised date: 2020-11-30

  Online published: 2021-01-14

Abstract

In the scenario of intercepting a near space maneuvering target, the powered ascent phase of the interceptor has a significant impact on the midcourse guidance performance as well as the final interception precision. In this paper, an integrated guidance method is designed based on the model predictive static programming (MPSP) theory, which is able to efficiently generate the optimal trajectory as well as guidance commands for the powered ascent phase and the midcourse phase. First, an improved model predictive static programming method is proposed, which has merits of obtaining the optimal initial state, considering the terminal constraints, and solving the performance index with the states. Second, an equivalent drag model is established, then a two-phase programming model involving the powered and unpowered flight phases is developed. By using the piecewise discretization method and formulating the state variation relationship at the shutdown point, the interior point constraint is avoided, which ensures that the proposed MPSP algorithm can directly solve the two-phase programming problem. Finally, applying the proposed MPSP algorithm and two-phase programming model, the optimal trajectory is achieved to maximum the final speed. With the prediction of the target motion, predictive interception for the maneuvering target is accomplished. Simulation results show that the proposed method can improve the guidance accuracy and the final speed, even for highly maneuvering target.

Cite this article

ZHOU Cong , YAN Xiaodong , TANG Shuo , LYU Shi . Midcourse guidance for endo-atmospheric interception based on model predictive static programming[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(11) : 524912 -524912 . DOI: 10.7527/S1000-6893.2020.24912

References

[1] 张灿, 林旭斌, 胡冬冬, 等. 2018年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2019(2):1-5, 15. ZHANG C, LIN X B, HU D D, et al. A survey of foreign hypersonic vehicle technology development in 2018[J]. Aerodynamic Missile Journal, 2019(2):1-5, 15(in Chinese).
[2] 胡冬冬. 2019年美国高超声速武器防御体系建设动向及发展研究[J]. 战术导弹技术,2020(1):1-8, 14. HU D D. Research on the development of hypersonic weapon defense system in the United States in year 2019[J]. Tactical Missile Technology, 2020(1):1-8, 14(in Chinese).
[3] 秦雷. 临近空间领域面临的重大控制科学问题研究[J]. 战术导弹技术, 2017(1):85-92, 97. QIN L. Research on important control scientific problems of near space hypersonic vehicles[J]. Tactical Missile Technology, 2017(1):85-92, 97(in Chinese).
[4] 李君龙, 李阳, 刘成红, 等. 临近空间防御高精度制导控制面临的技术挑战[J]. 战术导弹技术, 2016(3):7-11. LI J L, LI Y, LIU C H, et al. Problem and challenge on the high-precision guidance and controldenfensing in the near space[J]. Tactical Missile Technology, 2016(3):7-11(in Chinese).
[5] 韦刚, 刘昌云, 姚小强, 等. 临近空间高超声速飞行器拦截关键问题研究[J]. 飞航导弹, 2016(8):12-16. WEI G, LIU C Y, YAO X Q, et al. Research on key problems for interception of near-space hypersonic vehicle[J]. Aerodynamic Missile Journal, 2016(8):12-16(in Chinese).
[6] 葛致磊, 孙琦. 交会角对制导性能的影响[J]. 宇航学报, 2008, 29(5):1492-1495. GE Z L,SUN Q. Effects of interception angle on the performance of guidance[J]. Journal of Astronautics, 2008, 29(5):1492-1495(in Chinese).
[7] 李庚泽, 魏喜庆, 王社阳. 基于轨迹预测的高超声速飞行器拦截中/末制导研究[J]. 上海航天, 2017, 34(6):7-12. LI G Z, WEI X Q, WANG S Y. Study on trajectory predicting and midcourse/terminal guidance against hypersonic vehicle[J]. Aerospace Shanghai, 2017, 34(6):7-12(in Chinese).
[8] 周聪, 闫晓东,唐硕. 圆弧预测变系数显式拦截中制导[J]. 航空学报, 2019,40(10):323122. ZHOU C, YAN X D, TANG S. Explicit guidance law with varying gain and circular pre-diction for mid-course interception[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):323122(in Chinese).
[9] 马自茹, 魏明英, 李运迁. 控制量权重可变的主动段最优中制导律[J]. 现代防御技术, 2018, 46(6):44-50. MA Z R, WEI M Y, LI Y Q. Active section optimal midcourse guidance law with controlled amount variable weights[J]. Modern Defence Technology, 2018, 46(6):44-50(in Chinese).
[10] 熊少锋, 魏明英, 赵明元, 等. 考虑导弹速度时变的角度约束最优中制导律[J]. 控制理论与应用, 2018, 35(2):248-257. XIONG S F, WEI M Y, ZHAO M Y, et al. Impact angle constrained optimal midcourse guidance law for missiles of time-varying speed[J]. Control Theory & Applications, 2018, 35(2):248-257(in Chinese).
[11] DWIVEDI P N, BHALE P G, BHATTACHARYYA A, et al. Lead angle constrained optimal midcourse guidance[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, VA:AIAA, 2013.
[12] 周觐, 王华吉, 赵炜, 等. 拦截高速目标的中制导次优弹道修正[J]. 北京理工大学学报, 2019,39(8):839-845. ZHOU J, WANG H J, ZHAO W, et al. Suboptimal midcourse trajectory modification for hypersonic target interception[J]. Transactions of Beijing Institute of Technology, 2019, 39(8):839-845(in Chinese).
[13] DWIVEDI P N, BHATTACHARYA A, PADHI R. Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):860-877.
[14] ZHOU J, LEI H M, ZHANG D Y. Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63:266-277.
[15] 张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021,47(4):863-874. ZHANG R S, CHEN W C.Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4):863-874(in Chinese).
[16] FOREMAN D, TOURNES C, SHTESSEL Y. Interceptor missile control-A new look at boost and mid-course[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[17] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40.
[18] SARMAH P, CHAWLA C, PADHI R. A nonlinear approach for reentry guidance of reusable launch vehicles using model predictive static programming[C]//16th Mediterranean Conference on Control and Automation Congress Centre. Piscataway, NJ:IEEE, 2008:41-46.
[19] YAN X D, HE L. Unpowered approach and landing trajectory planning using second-order cone programming[J]. Aerospace Science and Technology, 2020, 101:105841.
[20] SAGLIANO M. Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):320-334.
[21] LIU X F, SHEN Z J, LU P. Exact convex relaxation for optimal flight of aerodynamically controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4):1881-1892.
[22] ZHOU C, YAN X D, TANG S. Generalized quasi-spectral model predictive static programming method using Gaussian quadrature collocation[J]. Aerospace Science and Technology, 2020, 106:106134.
[23] KUMAR P, BHATTACHARYA A, PADHI R. Mini-mum drag optimal guidance with final flight path angle constraint against Re-entry targets[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018.
[24] 陈克俊,刘鲁华,孟云鹤. 远程火箭飞行动力学与制导[M]. 北京:国防工业出版社, 2014:228. CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics and guidance[M]. Beijing:National Defense Industry Press, 2014:228(in Chinese).
[25] 叶泽浩, 毕红葵, 谭贤四, 等. 改进的平方根UKF在再入滑翔目标跟踪中的应用[J]. 宇航学报, 2019, 40(2):215-222. YE Z H, BI H K, TAN X S, et al. Improved square root UKF applying to reentry glide target tracking[J]. Journal of Astronautics, 2019, 40(2):215-222(in Chinese).
Outlines

/