Fluid Mechanics and Flight Mechanics

Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer

  • LI Qiang ,
  • WAN Bingbing ,
  • YANG Kai ,
  • ZHU Tao
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-11-09

  Revised date: 2020-12-05

  Online published: 2021-01-08

Supported by

National Key Research and Development Program of China(2019YFA0405300)

Abstract

High-frequency heat flux fluctuation is important in shock tunnel tests for experimental investigation of hypersonic boundary layer transition. A cone model is applied to test the self-innovated Atomic Layer Thermopile (ALTP) heat-flux sensors under the experimental condition of Mach number 10 with the unit Reynolds number being 1.2×107/m, 4.7×106/m and 2.4×106/m, respectively, in the Ø2 m shock tunnel (FD-14A) of China Aerodynamics Research and Development Center. The tests obtained the spectrum characteristics of the heat flux and pressure fluctuation in the cone model boundary layer under different flow conditions, and through comparison with the high-frequency pressure fluctuation and N factor from linear stability theory computation, the spectrum response capability of the self-innovated ALTP heat-flux sensor is confirmed, indicating its applicability to the research on hypersonic boundary layer transition. The test results show that the heat flux fluctuation has a different spectrum characteristic from that of the pressure fluctuation; the pressure fluctuation energy distribution is relatively uniform under turbulent conditions, while the heat flux fluctuation energy decays more obviously with frequency increase; compared to the pressure fluctuation, the heat flux fluctuation signal is less susceptible to interference; the peak spectrum of the second mode wave of the heat flux fluctuation became prominent earlier than that of the pressure fluctuation in the flow field of Mach number 10 with the unit Reynolds number 2.4×106/m.

Cite this article

LI Qiang , WAN Bingbing , YANG Kai , ZHU Tao . Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(2) : 124956 -124956 . DOI: 10.7527/S1000-6893.2020.24956

References

[1] SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J].Journal of Spacecraft and Rockets, 1999, 36(1):8-20.
[2] BERRY S, HORVATH T, HOLLIS B, et al. X-33 hypersonic boundary layer transition[C]//33rd Thermophysics Conference. Reston:AIAA, 1999.
[3] MALIK M, ZANG T, BUSHNELL D. Boundary layer transition in hypersonic flows[C]//2nd International Aerospace Planes Conference. Reston:AIAA, 1990.
[4] LIN T C, GRABOWSKY W R, YELMGREN K E. The search for optimum configurations for re-entry vehicles[J].Journal of Spacecraft and Rockets, 1984, 21(2):142-149.
[5] WHITEHEAD A. NASP aerodynamics[C]//National Aerospace Plane Conference. Reston:AIAA, 1989.
[6] ERICSSON L. Effect of boundary-layer transition on vehicle dynamics[C]//7th Aerospace Sciences Meeting. Reston:AIAA, 1969.
[7] MARTELLUCCI A, NEFF R. The influence of asymmetric transition on re-entry vehicle motion[C]//Guidance, Control and Flight Mechanics Conference. Reston:AIAA, 1970.
[8] HOLDEN M S. Studies of the effects of transitional and turbulent boundary layers on the aerodynamic performance of hypersonic reentry vehicles in high Reynolds number flows:Calspan Report AB-5834-A-2[R]. 1978.
[9] 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J].Acta Aerodynamica Sinica, 2018, 36(2):196-212(in Chinese).
[10] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:The role of quiet tunnels[J].Progress in Aerospace Sciences, 2015, 72:17-29.
[11] FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets, 2006, 43(4):731-738.
[12] 姜楠, 李悦雷. 圆柱绕流尾迹对壁湍流相干结构影响的实验研究[J].实验流体力学, 2007, 21(3):8-13. JIANG N, LI Y L. Experimental study on coherent structures in wall turbulence interacting with a circular cylinder wake[J].Journal of Experiments in Fluid Mechanics, 2007, 21(3):8-13(in Chinese).
[13] BERRIDGE D, CASPER K, RUFER S, et al. Measurements and computations of second-mode instability waves in several hypersonic wind tunnels[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010.
[14] ALBA C, CASPER K, BERESH S, et al. Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010.
[15] MUÑOZ F, HEITMANN D, RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J].Journal of Spacecraft and Rockets, 2014, 51(2):442-454.
[16] 纪锋, 解少飞, 沈清. 高超声速1MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. JI F, XIE S F, SHEN Q. Hypersonic high frequency(1MHz)fluctuation pressure testing technology and application[J].Acta Aerodynamica Sinica, 2016, 34(5):587-591(in Chinese).
[17] HOFFERTH J, SARIC W, KUEHL J, et al. Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel[J].International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1/2/3):109.
[18] LACHOWICZ J T, CHOKANI N, WILKINSON S P. Boundary-layer stability measurements in a hypersonic quiet tunnel[J].AIAA Journal, 1996, 34(12):2496-2500.
[19] PARZIALE N J, SHEPHERD J E, HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J].AIAA Journal, 2012, 51(3):750-754.
[20] PARZIALE N J, SHEPHERD J E, HORNUNG H G. Observations of hypervelocity boundary-layer instability[J].Journal of Fluid Mechanics, 2015, 781:87-112.
[21] WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J].AIAA Journal, 2015, 53(12):3712-3725.
[22] 余涛, 张威, 张毅锋, 等. 一种非介入式高超声速边界层不稳定波的测量方法[J].实验流体力学, 2019, 33(5):71-76. YU T, ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J].Journal of Experiments in Fluid Mechanics, 2019, 33(5):71-76(in Chinese).
[23] 李悦雷. 基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D]. 天津:天津大学, 2007. LI Y L. Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D]. Tianjin:Tianjin University, 2007(in Chinese).
[24] ROEDIGER T, KNAUSS H, ESTORF M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J].Journal of Spacecraft and Rockets, 2009, 46(2):266-273.
[25] KEGERISE M A, RUFER S J. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer[J].Experiments in Fluids, 2016, 57(8):1-15.
[26] ZHANG P X, HABERMEIER H U. Atomic layer thermopile materials:physics and application[J].Journal of Nanomaterials, 2008, 2008:1-12.
[27] ROEDIGER T. A novel fast-response heat flux sensor for fundamental research in the field of future space transportation systems[C]//58th International Astronautical Congress, 2007.
[28] ROEDIGER T, KNAUSS H, GAISBAUER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor-part I:sensor and benchmarks[J].Journal of Turbomachinery, 2008, 130(1):011018.
[29] KNAUSS H, ROEDIGER T, GAISBAUER U, et al. A novel sensor for fast heat flux measurements[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006.
[30] 易淼荣. 高超声速边界层转捩及控制研究[D]. 北京:军事科学院,2019. YI M R. Research on hypersonic boundary layer transition and control[D]. Beijing:Academy of Military Sciences PLA, 2019(in Chinese).
[31] HEITMANN D, KÄHLER C, RADESPIEL R, et al. Disturbance-level and roughness-induced transition measurements in a conical boundary layer at Mach 6[C]//26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2008.
[32] BOUNTIN D, CHIMITOV T, MASLOV A, et al. Stabilization of a hypersonic boundary layer using a wavy surface[J].AIAA Journal, 2013, 51(5):1203-1210.
[33] 韩健. 高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D]. 天津:天津大学, 2010. HAN J. Wavelet analysis and cross bispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D]. Tianjin:Tianjin University, 2010(in Chinese).
[34] 刘初平. 气动热与热防护试验热流测量[M]. 北京:国防工业出版社, 2013. LIU C P. Heat flux measurement in aerothermodynamic test[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[35] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J].航空学报, 2019, 40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese).
[36] 杨凯, 杨庆涛, 朱新新, 等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J].宇航计测技术, 2018, 38(3):67-72. YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J].Journal of Astronautic Metrology and Measurement, 2018, 38(3):67-72(in Chinese).
[37] 杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J].实验流体力学, 2020, 34(6):86-91. YANG K, ZHU T, WANG X, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J].Journal of Experiments in Fluid Mechanics, 2020, 34(6):86-91(in Chinese).
Outlines

/