Solid Mechanics and Vehicle Conceptual Design

Research and verification of comprehensive acceleration technology for civil aircraft full-scale fatigue test

  • WANG Yupeng ,
  • TIAN Wenpeng ,
  • SONG Pengfei ,
  • XIA Feng ,
  • FENG Jianmin
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710065, China;
    2. Aviation Technology Key Laboratory for Full-scale Aircraft Structures Static/Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2020-10-26

  Revised date: 2020-10-28

  Online published: 2021-01-08

Supported by

National Natural Science Foundation of China(51601175)

Abstract

The full-scale fatigue test of civil aircraft is related to airworthiness certification and service use. In order to shorten the fatigue test time, the comprehensive acceleration technology is studied from two aspects of load spectrum simplification and test process acceleration. The DFR method is improved to fit the whole life interval. The equivalent damage conversion method taking the damage ratio as the judgment basis is proposed based on improved DFR, and it's correctness is verified by a small test piece, and then it is applied to the full-scale fatigue test. The total number of cycles in each task segment is greatly reduced after the load spectrum simplification. The damage results of the rear fuselage test applied original load spectrum are basically the same as those of the full-scale aircraft test applied simplified load spectrum. It can be seen that the method is suitable for the full-scale fatigue test. For different stages of test implementation, the overall load balance optimization is proposed to quickly complete the load handing, and the subsection constant rate loading optimization is proposed to reasonably shorten loading time of each cycle. The error of load handling results meet the design requirements. The average number of daily landings increases from 48 to 90.

Cite this article

WANG Yupeng , TIAN Wenpeng , SONG Pengfei , XIA Feng , FENG Jianmin . Research and verification of comprehensive acceleration technology for civil aircraft full-scale fatigue test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 224919 -224919 . DOI: 10.7527/S1000-6893.2020.24919

References

[1] 中国民用航空总局.中国民用航空规章第25部运输类飞机适航标准[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. China civil aviation regulations part 25 airworthiness standard of transport aircraft[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[2] 董彦民, 刘文珽, 杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报, 2010, 31(12):2357-2364. DONG Y M, LIU W T, YANG C. Military aircraft durability design method based on detail fatigue rating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12):2357-2364(in Chinese).
[3] FELIX S, FRANK E. An efficient load introduction concept for the A380 full-scale fatigue test[C]//ICAF2005, 2005:365-376.
[4] BAO R, ZHANG X. Fatigue crack growthbehaviour and life prediction for 2324-T39 and 7050-T7451 aluminium alloys under truncated load spectra[J]. International Journal of Fatigue, 2010, 32(7):1180-1189.
[5] IYYER N, SARKAR S, MERRILL R, et al. Aircraft life management using crack initiation and crack growth models-P-3C Aircraft experience[J]. International Journal of Fatigue, 2007, 29(9-11):1584-1607.
[6] HE X F, SUI F C, DONG Y M, et al. Relative severity investigation in a severe load spectrum[J]. Engineering Failure Analysis, 2010, 17(7-8):1509-1516.
[7] 卢耀辉, 张醒, 张舒翔, 等. 高速列车车体加速寿命试验载荷谱编制及分析[J]. 机械工程学报, 2017, 53(24):151-160. LU Y H, ZHANG X, ZHANG S X, et al. Load spectrum compilation and analysis of acceleration life test for high speed train carbody[J]. Journal of Mechanical Engineering, 2017, 53(24):151-160(in Chinese).
[8] 平安, 王德俊, 徐灏. 载荷谱强化等损伤寿命折算新方法[J]. 机械强度, 1993, 15(2):38-40, 45. PING A, WANG D J, XU H. A new calculating method for converting lives according to equal damage on strengthening loading spectra[J]. Journal of Mechanical Strength, 1993, 15(2):38-40, 45(in Chinese).
[9] 张保法, 傅祥炯. 运输机随机载荷谱的简化和浓缩[J]. 航空学报, 1994, 15(1):50-53. ZHANG B F, FU X J. Simplifying and concentrating a set of randomspectrum for transport[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1):50-53(in Chinese).
[10] XIONG J J, SHENOI R A. A load history generation approach for full-scale accelerated fatigue tests[J]. Engineering Fracture Mechanics, 2008, 75(10):3226-3243.
[11] SCHIJVE J, VLUTTERS A M, ICHSAN, et al. Crack growth inaluminium alloy sheet material under flight-simulation loading[J]. International Journal of Fatigue, 1985, 7(3):127-136.
[12] TIAN H L, BAO R, ZHANG J Y, et al. Influence of low load truncation level on crack growth for Al2324-T39 and Al7050-T7451[J]. Chinese Journal of Aeronautics, 2009, 22(4):401-406.
[13] HOFFMAN M E, HOFFMAN P C. Corrosion and fatigue research-structural issues and relevance to naval aviation[J]. International Journal of Fatigue, 2001, 23:1-10.
[14] IYYER N, SARKAR S, MERRILL R, et al. Aircraft life management using crack initiation and crack growthmodels-P-3C Aircraft experience[J]. International Journal of Fatigue, 2007, 29(9-11):1584-1607.
[15] 穆童, 孟鸽, 谢里阳, 等. 基于应力分布模型的随机疲劳加速试验设计[J]. 航空学报, 2020, 41(2):223229. MU T, MENG G, XIE L Y, et al. Accelerated random fatigue test design based on stress distribution model[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):223229(in Chinese).
[16] 金甲, 姚卫星, 谢飞, 等. 疲劳载荷谱B氏等效与试验验证[J]. 航空科学技术, 2016, 27(7):57-63. JIN J, YAO W X, XIE F, et al. Equivalence offatigue load spectra based on B-distance with experimental verification[J]. Aeronautical Science & Technology, 2016, 27(7):57-63(in Chinese).
[17] 王长江. 民机载荷谱分散性及其等效方法研究[D]. 南京:南京航空航天大学, 2014. WANG C J. Load spectrum equivalent approach and scatter analysis of civil aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[18] 刘学君, 杨晓华, 万贺. 基于DFR法的复杂载荷谱的等损伤简化方法[J]. 南京航空航天大学学报, 2014, 46(3):408-412. LIU X J, YANG X H,WAN H. Equal damage simplified technique of complicated load spectrum based on DFR[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3):408-412(in Chinese).
[19] 陈滨琦, 曾建江, 王一丁, 等. DFR法在结构疲劳优化设计中的应用[J]. 航空学报, 2013, 34(5):1122-1128. CHEN B Q, ZENG J J, WANG Y D, et al. Application of DFR method to optimal fatigue design of structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1122-1128(in Chinese).
[20] CHEN A, YANG J, ZHANG K, et al. Fatigue reliability analysis of 6156-T6 riveted joints based on detail fatigue rating[J]. IOP Conference Series:Materials Science and Engineering, 2017, 269:012045.
[21] 闫光, 刘力宏, 左春柽. 飞机载荷谱实测数据并行统计处理算法[J]. 吉林大学学报(工学版), 2012, 42(3):683-688. YAN G, LIU L H, ZUO C C. Parallel statistics processing algorithm of aircraft load spectrum testing data[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(3):683-688(in Chinese).
[22] 田文朋, 夏峰, 宋鹏飞, 等. 水陆两栖飞机静力试验优化机翼变形的载荷配平[J]. 航空学报, 2020, 41(11):223956. TIAN W P, XIA F, SONG P F, et al. Load balancing for wing deformation optimization in amphibious aircraft static test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):223956(in Chinese).
[23] 林国华, 胡朝江. 序列二次规划法解最优控制问题[J]. 飞行力学, 1994, 12(4):45-50. LIN G H, HU C J.The applicaton of sequential quadratic programming to solving optimal control problems[J]. Flight Dynamics, 1994, 12(4):45-50(in Chinese).
[24] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[25] 梁超, 贺小帆. 飞-续-飞谱下7B04-T6铝合金裂纹扩展规律试验研究[J]. 航空材料学报, 2010, 30(3):74-77. LIANG C, HE X F. Testresearch on fatigue crack propagation law in aluminum alloy 7B04-T6 under flight-by-flight spectrum[J]. Journal of Aeronautical Materials, 2010, 30(3):74-77(in Chinese).
Outlines

/