Article

Space net capture based on net mouth trajectory

  • PAN Shiqi ,
  • XU Bo
Expand
  • 1. School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China;
    2. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China

Received date: 2020-10-09

  Revised date: 2020-11-21

  Online published: 2020-12-31

Supported by

Basic Research Project (JCKY2020110C096)

Abstract

Space net is a flexible capture technology. To analyze the process of capturing target more accurately, an analysis method based on the net mouth trajectory is proposed. Using the mass spring-damper model and Hertz contact theory, a dynamics model of net capture is established. According to the time sequence, the process of net capture is divided into three stages:deploying, wrapping and capturing. Based on the trajectory analysis of the net mouth, the evaluation index for the capture success is proposed. This paper focuses on the analysis of relevant capture parameters involved in the capture process. These capture parameters include the shooting velocity, capture distance, moment of net mouth closure, and eccentric distance. The result shows that the analysis method based on the net mouth trajectory can analyze the net capture process more comprehensively and directly. The method can provide a reference for selection of capture parameters to improve the success rate of target capture by the net.

Cite this article

PAN Shiqi , XU Bo . Space net capture based on net mouth trajectory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(11) : 524850 -524850 . DOI: 10.7527/S1000-6893.2020.24850

References

[1] 郭吉丰, 王班, 谭春林, 等. 空间非合作目标物柔性捕获技术进展[J]. 宇航学报, 2020, 41(2):125-135. GUO J F, WANG B, TAN C L, et al. Development of flexible capture technology for space non-cooperative target[J]. Journal of Astronautics, 2020, 41(2):125-135(in Chinese).
[2] Bremen A S. Robotic geostationary orbit restorer (ROGER) Phase A Final report:15706/01/NL/WK[R]. Paris:ESA, 2003.
[3] Bischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer[J]. Science and Technology Series, 2004, 109:183-193.
[4] 张青斌, 孙国鹏, 丰志伟, 等. 柔性绳网动力学建模与天地差异性分析[J]. 宇航学报, 2014, 35(8):871-877. ZHANG Q B, SUN G P, FENG Z W, et al. Dynamics modeling and differentia analysis between space and ground for flexible cable net[J]. Journal of Astronautics, 2014, 35(8):871-877(in Chinese).
[5] GAO Q Y, ZHANG Q B, PENG W Y, et al. Dynamics modelling and ground test of space nets[C]//20167th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway:IEEE Press, 2016:587-591.
[6] SHAN M H, GUO J, GILL E. Deployment dynamics of tethered-net for space debris removal[J]. Acta Astronautica, 2017, 132:293-302.
[7] SI J Y, PANG Z J, DU Z H, et al. Dynamics modeling and simulation of self-collision of tether-net for space debris removal[J]. Advances in Space Research, 2019, 64(9):1675-1687.
[8] 于洋, 宝音贺西, 李俊峰. 空间飞网抛射展开动力学建模与仿真[J]. 宇航学报, 2010, 31(5):1289-1296. YU Y, BAO Y, LI J F. Modeling and simulation of projecting deployment dynamics of space webs[J]. Journal of Astronautics, 2010, 31(5):1289-1296(in Chinese).
[9] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of impact in tether net/gripper systems[J]. Multibody System Dynamics, 2004, 11(3):235-250.
[10] BENVENUTO R, SALVI S, LAVAGNA M. Dynamics analysis and GNC design of flexible systems for space debris active removal[J]. Acta Astronautica, 2015, 110:247-265.
[11] 甄明, 杨乐平, 张青斌. 基于附加约束方法的空间飞网碰撞动力学与仿真[J]. 载人航天, 2017, 23(4):498-505. ZHEN M, YANG L P, ZHANG Q B. Contact dynamics and simulation of space net based on appending constraint method[J]. Manned Spaceflight, 2017, 23(4):498-505(in Chinese).
[12] 甄明, 杨乐平, 张青斌. 空间飞网地面碰撞试验与仿真[J]. 国防科技大学学报, 2018, 40(5):171-176. ZHEN M, YANG L P, ZHANG Q B. Ground impact test and its simulation of space net[J]. Journal of National University of Defense Technology, 2018, 40(5):171-176(in Chinese).
[13] 刘海涛, 杨乐平, 张青斌, 等. 基于正交试验的空间绳网展开参数灵敏度分析[J]. 动力学与控制学报, 2018, 16(2):144-150. LIU H T, YANG L P, ZHANG Q B, et al. Parameter sensitivity analysis of space net deployment based on orthogonal experiment[J]. Journal of Dynamics and Control, 2018, 16(2):144-150(in Chinese).
[14] CHEN Q Q, ZHANG Q B, GAO Q Y, et al. Design and optimization of a space net capture system based on a multi-objective evolutionary algorithm[J]. Acta Astronautica, 2020, 167:286-295.
[15] BARNES C M, BOTTA E M. A quality index for net-based capture of space debris[J]. Acta Astronautica, 2020, 176:455-463.
[16] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010. CHEN Q. Design and dynamics of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010(in Chinese).
[17] BOTTA E M, SHARF I, MISRA A K. Simulation of tether-nets for capture of space debris and small asteroids[J]. Acta Astronautica, 2019, 155:448-461.
[18] 张江. 空间绳网捕获过程碰撞动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2015. ZHANG J. Contact dynamics of space net on capturing target[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
[19] 王波, 郭吉丰. 采用超声波电机的空间飞网自适应收口机构设计[J]. 宇航学报, 2013, 34(3):308-313. WANG B, GUO J F. Design of self-adaptative take-up mechanism for space net using ultrasonic motor[J].Journal of Astronautics, 2013, 34(3):308-313(in Chinese).
[20] SHARF I, THOMSEN B, BOTTA E M, et al. Experiments and simulation of a net closing mechanism for tether-net capture of space debris[J]. Acta Astronautica, 2017, 139:332-343.
[21] BOTTA E M, SHARF I, MISRA A K. Energy and momentum analysis of the deployment dynamics of nets in space[J]. Acta Astronautica, 2017, 140:554-564.
[22] 付杰, 庞兆君, 司骥跃, 等. 空间绳网捕获过程动力学与仿真研究[J]. 机械科学与技术, 2020, 39(7):1133-1138. FU J, PANG Z J, SI J Y, et al. Dynamics simulation of acquisition process of space net[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7):1133-1138(in Chinese).
Outlines

/