Material Engineering and Mechanical Manufacturing

Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites

  • SHEN Gaofeng ,
  • WANG Zhenjun ,
  • LIU Fenghua ,
  • ZHANG Yingfeng ,
  • CAI Changchun ,
  • XU Zhifeng ,
  • YU Huan
Expand
  • 1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-10-09

  Revised date: 2020-11-10

  Online published: 2020-12-31

Supported by

National Natural Science Foundation of China (51765045, 52165018); Aeronautical Science Foundation of China (2019ZF056013); Jiangxi Provincial Natural Science Foundation (20202ACBL204010); National Defense Basic Scientific Research Program of China (JCKY2018401C004)

Abstract

A novel aluminum matrix composite reinforced with laminated puncture carbon fiber fabric (CF/Al composites) was prepared. The progressive damage and mechanical behavior of the composite subjected to quasi-static tensile loading were investigated by using test and micromechanical simulation method. The test results show that the tensile modulus, ultimate strength and fracture strain are 129.61 GPa, 630.14 MPa, and 0.75%, respectively, and the calculation errors of the above property parameters are -9.41%, 7.57% and 1.33%, respectively. The macroscopic stress-strain curve from the micromechanical simulation agrees well with the test result. At the initial tensile stage, local damages were found in the matrix alloy located between the warp and weft yarns. With the increase of tensile strain, these damage zones accumulated gradually and led to the transverse cracking of weft yarns and piercing yarns in sequence. Thereafter, the warp yarns and matrix alloy failed successively, leading to dramatical dropping of the macroscopic stress-strain curve at the final tensile stage. The tensile fracture morphology was characterized by coexistence of fracture of warp yarns and transverse cracking of weft and piercing yarns. The axial fracture of warp yarns, which was induced by fiber pulling-out and matrix tearing, was the dominant failure mechanism of the composites under the condition of warp-directional tensile loading.

Cite this article

SHEN Gaofeng , WANG Zhenjun , LIU Fenghua , ZHANG Yingfeng , CAI Changchun , XU Zhifeng , YU Huan . Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(12) : 424816 -424816 . DOI: 10.7527/S1000-6893.2020.24816

References

[1] SHIRVANIMOGHADDAM K, HAMIM S U, AKBARI M K, et al. Carbon fiber reinforced metal matrix composites:Fabrication processes and properties[J]. Composites Part A:Applied Science and Manufacturing, 2017, 92:70-96.
[2] RAWAL S P. Metal-matrix composites for space applications[J]. JOM, 2001, 53(4):14-17.
[3] MATSUNAGA T, OGATA K, HATAYAMA T, et al. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(3):771-778.
[4] WANG X, JIANG D M, WU G H, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite[J]. Materials Science and Engineering:A, 2008, 497(1-2):31-36.
[5] SEONG H G, LOPEZ H F, ROBERTSON D P, et al. Interface structure in carbon and graphite fiber reinforced 2014 aluminum alloy processed with active fiber cooling[J]. Materials Science and Engineering:A, 2008, 487(1-2):201-209.
[6] TANG T, HAMMI Y, HORSTEMEYER M F, et al. Finite element micromechanical analysis of the deformation and stress state dependent damage evolution in fiber reinforced metal matrix composites[J]. Computational Materials Science, 2012, 59:165-173.
[7] WANG Z J, WANG Z Y, XIONG B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading[J]. Journal of Alloys and Compounds, 2020, 815:152459.
[8] XU Q, LU Z X. An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations[J]. International Journal of Plasticity, 2013, 41:147-164.
[9] ZHANG Y H, YAN L L, MIAO M H, et al. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites[J]. Materials & Design, 2015, 86:872-877.
[10] MA Y Q, QI L H, ZHENG W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1915-1921.
[11] 周计明, 郑武强, 齐乐华, 等. 真空吸渗挤压二维正交铺层Cf/Al复合材料压缩失效机制[J]. 上海大学学报(自然科学版), 2014, 20(1):75-82. ZHOU J M, ZHENG W Q, QI L H, et al. Investigation on compressive failure mechanism of 2D cross-ply Cf/Al composites by extrusion directly following vacuum pressure infiltration process[J]. Journal of Shanghai University (Natural Science), 2014, 20(1):75-82(in Chinese).
[12] HUFENBACH W, GUDE M, CZULAK A, et al. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods[J]. Manufacturing Engineering, 2009, 35(2):177-183
[13] YANG Q R, LIU J X, LI S K, et al. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite[J]. Materials & Design, 2014, 57:442-448.
[14] ZHANG J J, LIU S C, ZHANG Y X, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5wt%) matrix composites by an electromagnetic casting process[J]. Journal of Materials Processing Technology, 2015, 226:78-84.
[15] ZHANG J J, LIU S C, LU Y P, et al. Semisolid-rolling and annealing process of woven carbon fibers reinforced Al-matrix composites[J]. Journal of Materials Science & Technology, 2017, 33(7):623-629.
[16] 兰泽宇, 余欢, 徐志锋, 等. 不同编织结构Cf/Al复合材料高温压缩性能与失效机理[J]. 航空学报, 2021,42(9):424488. LAN Z Y, YU H, XU Z F, et al. High temperature compressive properties and failure mechanism of Cf/Al composites with different braided structure[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(9):424488. (in Chinese).
[17] 王振军, 董敬涛, WANG Gui, 等. 2.5维织物Cf/Al复合材料制备及其经纬向拉伸变形力学行为研究[J]. 稀有金属材料与工程, 2017, 46(12):3744-3752. WANG Z J, DONG J T, WANG G, et al. Preparation of 2.5D woven fabric Cf/Al composite and its tensile deformation behavior in warp/weft direction[J]. Rare Metal Materials and Engineering, 2017, 46(12):3744-3752(in Chinese).
[18] LEE S K, BYUN J H, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science and Engineering:A, 2003, 347(1-2):346-358.
[19] 刘鹏, 郭亚洲, 赵振强, 等. 二维三轴编织复合材料压缩失效行为的细观有限元模拟[J]. 航空学报, 2019, 40(7):222865. LIU P, GUO Y Z, ZHAO Z Q, et al. Meso-scale finite element simulation of compressive failure behavior of two-dimensional triaxially braided composite[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):222865(in Chinese).
[20] LIU Z Y, HOU Y L, ZHAO Q L, et al. A novel surrogate modeling strategy of the mechanical properties of 3D braided composites[J]. Chinese Journal of Aeronautics, 2020, 33(10):2589-2601.
[21] WANG Z J, YANG S Y, SUN S P, et al. Multiscale modeling of mechanical behavior and failure mechanism of 3D angle-interlock woven aluminum composites subjected to warp/weft directional tension loading[J]. Chinese Journal of Aeronautics, 2021, 34(8):202-217.
[22] 冯景鹏, 余欢, 徐志锋, 等. Z向穿刺结构参数对Cf/Al复合材料显微组织与剪切性能的影响[J]. 特种铸造及有色合金, 2020, 40(6):653-657. FENG J P, YU H, XU Z F, et al. Effects of Z-direction puncture structural parameters on microstructures and shear properties of Cf/Al composites[J]. Special Casting & Nonferrous Alloys, 2020, 40(6):653-657(in Chinese).
[23] LI S G. Boundary conditions for unit cells from periodic microstructures and their implications[J]. Composites Science and Technology, 2008, 68(9):1962-1974.
[24] 张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7):1636-1645. ZHANG C, XU X W, YAN X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1636-1645(in Chinese).
[25] 周金秋, 王振军, 杨思远, 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为[J]. 复合材料学报, 2020, 37(4):907-918. ZHOU J Q, WANG Z J, YANG S Y, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading[J]. Acta Materiae Compositae Sinica, 2020, 37(4):907-918(in Chinese).
[26] ZHOU Y X, JIANG D Z, XIA Y M. Tensile mechanical behavior of T300 and M40 J fiber bundles at different strain rate[J]. Journal of Materials Science, 2001, 36(4):919-922.
[27] KAWABATA S. Measurement of the transverse mechanical properties of high-performance fibres[J]. The Journal of the Textile Institute, 1990, 81(4):432-447.
[28] WANG Z J, YANG S Y, DU Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal tensile loadings[J]. Materials (Basel, Switzerland), 2019, 12(19):3133.
[29] HOPKINS D A, CHAMIS C C. A unique set of micromechanics equations for high-temperature metal matrix composites:NASA TM 87154[R]. Washington, D.C.:National Aeronautics & Space Administration, 1985.
[30] 黄争鸣. 复合材料细观力学引论[M]. 北京:科学出版社, 2004:17-48. HUANG Z M. Introduction to micromechanics of composite materials[M]. Beijing:Science Press, 2004:17-48(in Chinese).
[31] 王振军, 田亮, 蔡长春, 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为[J]. 中国有色金属学报, 2019, 29(3):458-466. WANG Z J, TIAN L, CAI C C, et al. Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(3):458-466(in Chinese).
[32] RAJU I S, WANG J T. Classical laminate theory models for woven fabric composites[J]. Journal of Composites Technology and Research, 1994, 16(4):289-303.
[33] WANG L, WU J Y, CHEN C Y, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178:395-405.
[34] OKABE T, NISHIKAWA M, TOYOSHIMA H. A periodic unit-cell simulation of fiber arrangement dependence on the transverse tensile failure in unidirectional carbon fiber reinforced composites[J]. International Journal of Solids and Structures, 2011, 48(20):2948-2959.
Outlines

/