Fluid Mechanics and Flight Mechanics

Convective heat transfer of chevron-nozzle jet impingement on semi-circular surfaces

  • LYU Yuanwei ,
  • ZHANG Jingzhou ,
  • SHAN Yong ,
  • SUN Wenjing
Expand
  • Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-09-17

  Revised date: 2020-10-14

  Online published: 2020-12-31

Supported by

National Natural Science Foundation of China (51776097)

Abstract

An experimental research is performed to illustrate the different mechanisms of the chevron nozzle in improving jet impingement heat transfer over concave and convex semi-circular target surfaces with the same relative curvature (d/D) of 0.1. The experimental tests are carried out with jet Reynolds numbers (Re) ranging from 5 000 to 12 000 and dimensionless nozzle-to-surface distances (H/d) ranging from 1 to 8. Simultaneously, computations based on the large eddy simulation approach are conducted with a specific jet Reynolds number to characterize the flow dynamics of the chevron jet impingement on the different target surfaces. Results show that both the nozzle shape and the target surface shape significantly affect the jet flow dynamics and heat transfer in the vicinity of jet stagnation. For the chevron nozzle, the streamwise vortices developed from the chevron notches change the vortical coherence of the axisymmetric toroidal vortices in the round jet development. Despite of the target surface shape, the chevron nozzle is confirmed to be capable of enhancing the jet impingement heat transfer related to the round nozzle. Compared to that on the convex surface, the jet impingement on the concave surface is affected by the recirculation flow inside the concave cavity, leading to a degradation of chevron-nozzle jet impingement heat transfer, particularly at large nozzle-to-surface distances.

Cite this article

LYU Yuanwei , ZHANG Jingzhou , SHAN Yong , SUN Wenjing . Convective heat transfer of chevron-nozzle jet impingement on semi-circular surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 124762 -124762 . DOI: 10.7527/S1000-6893.2020.24762

References

[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201.
[2] 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2):520718. GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520718(in Chinese).
[3] 高杰, 郑群, 岳国强, 等. 燃气轮机涡轮叶顶间隙气热技术研究进展[J]. 航空学报, 2017, 38(9):521019. GAO J, ZHENG Q, YUE G Q, et al. Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):521019(in Chinese).
[4] COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science, 1996, 13(1):71-80.
[5] LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18):3497-3509.
[6] GULATI P, KATTI V, PRABHU S V. Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J]. International Journal of Thermal Sciences, 2009, 48(3):602-617.
[7] CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance:A review[J]. Experimental Thermal and Fluid Science, 2014, 58:15-35.
[8] VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2011, 23(12):124104.
[9] VIOLATO D, IANIRO A, CARDONE G, et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow, 2012, 37:22-36.
[10] YU Y Z, ZHANG J Z, XU H S. Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J]. International Journal of Heat and Mass Transfer, 2014, 72:222-233.
[11] VINZE R, CHANDEL S, LIMAYE M D, et al. Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle[J]. Experimental Thermal and Fluid Science, 2016, 78:124-136.
[12] 吕元伟, 张靖周, 王博滟, 等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报, 2018, 39(3):121694. LYU Y W, ZHANG J Z, WANG B Y, et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121694(in Chinese).
[13] CRISPO C M, GRECO C S, AVALLONE F, et al. On the flow organization of a chevron synthetic jet[J]. Experimental Thermal and Fluid Science, 2017, 82:136-146.
[14] CRISPO C M, GRECO C S, CARDONE G. Convective heat transfer in circular and chevron impinging synthetic jets[J]. International Journal of Heat and Mass Transfer, 2018, 126:969-979.
[15] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental investigation of impinging heat transfer of the pulsed chevron jet on a semi-cylindrical concave plate[J]. Journal of Heat Transfer, 2019, 141:032201.
[16] CORNARO C, FLEISCHER A S, GOLDSTEIN R J. Flow visualization of a round jet impinging on cylindrical surfaces[J]. Experimental Thermal and Fluid Science, 1999, 20(2):66-78.
[17] LEE D H, CHUNG Y S, KIM D S. Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet[J]. International Journal of Heat and Fluid Flow, 1997, 18(1):160-169.
[18] LEE D H, CHUNG Y S, WON S Y. The effect of concave surface curvature on heat transfer from a fully developed round impinging jet[J]. International Journal of Heat and Mass Transfer, 1999, 42(13):2489-2497.
[19] FENOT M, DORIGNAC E, VULLIERME J J. An experimental study on hot round jets impinging a concave surface[J]. International Journal of Heat and Fluid Flow, 2008, 29(4):945-956.
[20] BU X Q, PENG L, LIN G P, et al. Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge[J]. International Journal of Heat and Mass Transfer, 2015, 90:92-101.
[21] ZHOU Y, LIN G P, BU X Q, et al. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces[J]. Chinese Journal of Aeronautics, 2017, 30(2):586-594.
[22] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 1:Experimental analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338.
[23] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 2:Numerical analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338.
[24] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285.
[25] 李鑫郡, 张靖周, 谭晓茗. 单个压电风扇传热特性[J]. 航空学报, 2017, 38(7):120982. LI X J, ZHANG J Z, TAN X M. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120982(in Chinese).
[26] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17.
[27] LILLY D K. A proposed modification of the germanosubgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4:633-635.
[28] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulence flows:CTR-S88[R]. Stanford:Stanford University, 1988.
Outlines

/