Electronics and Electrical Engineering and Control

Fault tolerant game control of swarm confrontation with decision faults

  • NI Yuan ,
  • YANG Hao ,
  • JIANG Bin
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-11-17

  Revised date: 2020-12-07

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (61773201, 62073165); The Fundamental Research Funds for the Central Universities (NZ2020003)

Abstract

Some UAVs of the swarm are attacked or manipulated by the enemy in the confrontation scenario, and their decision-making rules are tampered to lead to a deviation between the swarm behaviors and the expected equilibrium. In the framework of the evolutionary matrix game, the equations for the multi- population replicator dynamics are used to model the UAV swarm and faults. Based on the Lyapunov functional approach, the local asymptotic stability of the equilibrium point as well as its domain of attraction is analyzed in both healthy and faulty cases. A self fault-tolerant condition is established. Moreover, an incentive based cooperative fault tolerant game control method between clusters is proposed to compensate for the deviation of swarm behaviors. With the method, the task allocation state of the UAV swarm can still reach the desired equilibrium point when there are faults, and the ideal payoff of the division of labor can be obtained.

Cite this article

NI Yuan , YANG Hao , JIANG Bin . Fault tolerant game control of swarm confrontation with decision faults[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 524978 -524978 . DOI: 10.7527/S1000-6893.2020.24978

References

[1] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1):723738. JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723738(in Chinese).
[2] TOMIC T, SCHMID K, LUTZ P, et al. Toward a fully autonomous UAV:Research platform for indoor and outdoor urban search and rescue[J]. Robotics & Automation Magazine IEEE, 2012, 19(3):46-56.
[3] MERINO L, CABALLERO F, MARTÍNEZ-DE-DIOS JR, et al. An unmanned aircraft system for automatic forest fire monitoring and measurement[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1-4):533-548.
[4] 周韬瑒. 博弈论在无人机应急通信网络研究中的应用[J]. 现代计算机, 2020(7):35-37, 41. ZHOU T Y. Application of game theory in the research of uav emergency communication network[J]. Modern Computer, 2020(7):35-37, 41(in Chinese).
[5] FERNANDEZ G. Management system for unmanned aircraft system team[D]. Catalunya:Universitat Politècnica de Catalunya, 2013:46-48.
[6] 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J/OL]. 系统工程与电子技术, (2020-08-20)[2020-09-16]. http://kns.cnki.net/kcms/detail/11.2422.TN.20200819.1037.042.html JIA G W, WANG J F. Research status and development of UAV swarms mission planning[J/OL]. Systems Engineering and Electronics, (2020-08-20)[2020-09-16]. (in Chinese).http://kns.cnki.net/kcms/detail/11.2422.TN.20200819.1037.042.html.
[7] 沈林成, 霍霄华, 牛轶峰. 离散粒子群优化算法研究现状综述[J]. 系统工程与电子技术, 2008(10):1986-1990, 1994. SHEN L C, HUO X H, NIU Y F. Survey of discrete particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2008(10):1986-1990, 1994(in Chinese).
[8] 李炜, 张伟. 基于粒子群算法的多无人机任务分配方法[J]. 控制与决策, 2010, 25(9):1359-1363, 1368. LI W, ZHANG W. Method of tasks allocation of multi-UAVs based on particles swarm optimization[J]. Control and Decision, 2010, 25(9):1359-1363, 1368(in Chinese).
[9] 国博, 王社伟, 陶军. 基于改进粒子群算法的多无人机任务分配研究[J]. 计算机仿真, 2009, 26(7):62-64, 153. GUO B, WANG S W, TAO J. Cooperative task allocation for unmanned combat aerial vehicles using improved particle colony algorithm[J]. Computer Simulation, 2009, 26(7):62-64, 153(in Chinese).
[10] 梁晓龙, 孙强, 尹忠海. 大规模无人系统集群智能控制方法综述[J]. 计算机应用研究, 2015, 32(1):11-16. LIANG X L, SUN Q, YIN Z H. Review on large-scale unmanned system swarm intelligence control method[J]. Application Research of Computers, 2015, 32(1):11-16(in Chinese).
[11] ZHANG C, LI Q, ZHU Y, et al. Dynamics of task allocation based on game theory in multi-agent systems[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2019, 66(6):1068-1072.
[12] DAI W, LU H, XIAO J, et al. Task allocation without communication based on incomplete information game theory for multi-robot systems[J]. Journal of Intelligent & Robotic Systems, 2018(1):1-16.
[13] CUI R X, GUO J, GAO B. Game theory-based negotiation for multiple robots task allocation[J]. Robotica, 2013, 31(6):923-934.
[14] PANAGI P, POLYCARPOU M M. Distributed fault accommodation for a class of interconnected nonlinear systems with partial communication[J]. IEEE Transactions Automatic Control, 2011, 56(12):2962-2967.
[15] YANG H, STAROSWIECKI M, JIANG B, et al. Fault tolerant cooperative control for a class of nonlinear multi-agent systems[J]. Systems & Control Letters, 2011, 60(4):271-277.
[16] YANG H, JIANG B, STAROSWIECKI M, et al. Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems[J]. Automatica, 2015, 54:19-55.
[17] LIU C, JIANG B, PATTON R J, et al. Hierarchical-structure-based fault estimation and fault-tolerant control for multi-agent systems[J]. IEEE Transactions on Control of Network Systems, 2019, 6(2):586-597.
[18] BOEM F, GALLO A J, RAIMONDO D M, et al. Distributed fault-tolerant control of large-scale systems:An active fault diagnosis approach[J]. IEEE Transactions on Control of Network Systems, 2019, 7(1):288-301.
[19] YANG H, HAN Q L, GE X L, et al. Fault tolerant cooperative control of multi-agent systems:A survey of trends and methodologies[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):4-17.
[20] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese).
[21] BROWN P N, BOROWSKI H, MARDEN J R. Security against impersonation attacks in distributed systems[J]. IEEE Transactions on Control of Network Systems, 2019, 6(1):440-450.
[22] ALPCAN T, BASAR T. Network security:A decision and game theoretic approach[M]. Cambridge:Cambridge University Press, 2011:37-49.
[23] PASQUALETTI F, DORLER F, BULLO F. Control-theoretic methods for cyberphysical security:Geometric principles for optimal cross-layer resilient control systems[J]. IEEE Control Systems Magazine, 2015, 35(1):110-127.
[24] PASQUALETTI F, DORFLER F, BULLO F. Attack detection and identification in cyber-physical systems[J]. IEEE Transactions on Automatic Control, 2013, 58(11):2715-2729.
[25] DING D, HAN Q L, XIANG Y, et al. A survey on security control and attack detection for industrial cyber-physical systems[J]. Neurocomputing, 2017, 275:1674-1683.
[26] 陈严波, 黄金龙, 汪志军, 等. 基于有向图的蜂群无人机故障影响[J]. 航空学报, 2020, 41(S2):724287. CHEN Y B, HUANG J L, WANG Z J, et al. Influences of drone swarm failure based on directed graph[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724287(in Chinese).
[27] MADEO D, MOCENNI C. Game interactions and dynamics on networked populations[J]. IEEE Transactions on Automatic Control, 2015, 60(7):1801-1810.
Outlines

/