Review

State of the art of precise interference-fit technology for composite structures in aircraft

  • CHENG Hui ,
  • FAN Xintian ,
  • XU Guanhua ,
  • YANG Yu ,
  • WANG Lan
Expand
  • 1. College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Xi'an Aircraft Industry(Group) Company Ltd., Xi'an 710089, China

Received date: 2020-10-14

  Revised date: 2020-11-16

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (51975472)

Abstract

Due to advantages in strength, toughness and lifespan, carbon fiber reinforced plastic (CFRP) has a wide range of applications in load-bearing structures in aircraft and other aerospace and transportation products. However, precise interference-fit technology for the CFRP used in the new generation aircraft brings the conflict between strength and performance, which contains a myriad of challenges for the theoretical understanding and modeling of the technology. This paper analyzes the state of the art of the precise interference-fit technology for aircraft composite structures, as well as the characteristics, difficulties and application status of the technology. The technical system framework of the technology is proposed. Key problems of the technology, including the stress analysis method of the composite material interference hole, the damage initiation and expansion mechanism of the structure, as well as the degradation mechanism of mechanical properties are summarized. Development trends of the technology in terms of damage modeling, fastener design, process planning, and material application are also discussed.

Cite this article

CHENG Hui , FAN Xintian , XU Guanhua , YANG Yu , WANG Lan . State of the art of precise interference-fit technology for composite structures in aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524876 -524876 . DOI: 10.7527/S1000-6893.2020.24876

References

[1] HOGG P J. Composites in armor[J]. Science, 2006, 314(5802):1100-1101.
[2] CHAE H G, KUMAR S. Making strong fibers[J]. Science, 2008, 319(5865):908-909.
[3] BOLKCOM C. F-22A Raptor, congressional research service reports report for congress[R]. Washington, D.C.:Congressional Research Service, 2008.
[4] GERTLER J. F-35 joint strike fighter (JSF) program:background and issues for congress[R]. Washington, D.C.:Congressional Research Service, 2011.
[5] ATRE A, JOHNSON W S. Analysis of the effects of interference and sealant on riveted lap joints[J]. Journal of Aircraft, 2007, 44(2):353-364.
[6] 宋丹龙, 张开富, 钟衡, 等. 层合板干涉螺接分层损伤及其临界干涉量[J]. 航空学报, 2016, 37(5):1677-1688. SONG D L, ZHANG K F, ZHONG H, et al. Delamination damage and critical interference percentage for interference fit bolt joint of laminates[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1677-1688(in Chinese).
[7] CHAKHERLOU T N, MIRZAJANZADEH M, ABAZADEH B, et al. An investigation about interference fit effect on improving fatigue life of a holed single plate in joints[J]. European Journal of Mechanics -A/Solids, 2010, 29(4):675-682.
[8] 于雷, 卜泳, 赵庆云, 等. 复合材料与金属混合夹层的干涉连接技术研究[J]. 航空制造技术, 2011, 54(22):90-93. YU L, BU Y, ZHAO Q Y, et al. Research on interference joining of composites and metal mixed sandwich[J]. Aeronautical Manufacturing Technology, 2011, 54(22):90-93(in Chinese).
[9] 刘风雷. 用于复合材料干涉结构的多功能紧固系统[J]. 航空制造技术, 2007, 50(3):98-101. LIU F L. Multifunctional fastening system for composite interference structures[J]. Aeronautical Manufacturing Technology, 2007, 50(3):98-101(in Chinese).
[10] 段元欣. CFRP螺栓干涉连接结构预紧行为及静强度研究[D]. 西安:西北工业大学, 2015. DUAN Y X. The preloading behavior and strength of bolted CFRP laminate joints with interference-fit[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[11] 曹增强. 应对我国大飞机研制的装配连接技术[J]. 航空制造技术, 2009, 52(2):88-91. CAO Z Q. Assembly connecting technology for the research of China large aircraft[J]. Aeronautical Manufacturing Technology, 2009, 52(2):88-91(in Chinese).
[12] 刘华东, 赵庆云. 长寿命机械连接技术研究应用进展[J]. 航空制造技术, 2016, 59(19):64-69, 79. LIU H D, ZHAO Q Y. Development of long-life mechanical joining technology[J]. Aeronautical Manufacturing Technology, 2016, 59(19):64-69, 79(in Chinese).
[13] 高星海, 曹增强. 钛合金干涉配合高锁螺栓应力波安装质量分析[J]. 机械科学与技术, 2012, 31(1):138-140, 145. GAO X H, CAO Z Q. Quality analysis of the interference-fit hi-lock bolts manufactured by titanium alloy using stress wave[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1):138-140, 145(in Chinese).
[14] 宋丹龙. CFRP结构干涉连接区域损伤萌生机理与控制方法研究[D]. 西安:西北工业大学, 2016. SONG D L. Damage initiation mechanism and optimization method around interference-fit joint of CFRP structures[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[15] MUSKHELISHVILI N I. Some basic problems of the mathematical theory of elasticity[M]. Dordrecht:Springer Netherlands, 1977.
[16] LEKHNITSKII S G, TSAI S W, CHERON T. Anisotropic plates[M]. London:Gordon and Breach, 1968.
[17] DE JONG T. Stresses around pin-loaded holes in elastically orthotropic or isotropic plates[J]. Journal of Composite Materials, 1977, 11(3):313-331.
[18] ECHAVARRÍA C, HALLER P, SALENIKOVICH A. Analytical study of a pin-loaded hole in elastic orthotropic plates[J]. Composite Structures, 2007, 79(1):107-112.
[19] ZHANG K D, UENG C E S. Stresses around a pin-loaded hole in orthotropic plates with arbitrary loading direction[J]. Composite Structures, 1985, 3(2):119-143.
[20] XIONG Y. A complex variational approach for single loaded/unloaded hole in finite laminated plate under general in-plane loads[J]. Science and Engineering of Composite Materials, 1999, 8(5):243-256.
[21] ALUKO O, WHITWORTH H A. Contact stress analysis around elliptic pin-loaded holes in orthotropic plates[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition.New York:ASME,2012.
[22] SONG D L, LI Y, ZHANG K F, et al. Stress distribution modeling for interference-fit area of each individual layer around composite laminates joint[J]. Composites Part B:Engineering, 2015, 78:469-479.
[23] WU T, ZHANG K F, CHENG H, et al. Analytical modeling for stress distribution around interference fit holes on pinned composite plates under tensile load[J]. Composites Part B:Engineering, 2016, 100:176-185.
[24] 武涛. 复合材料多钉干涉连接应力分布及损伤萌生研究[D]. 西安:西北工业大学, 2017. WU T. Stress distribution and damage initiation analysis of composite multi-pin joints with interference fit[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[25] TATE M B, ROSENFELD S J. Preliminary investigation of the loads carried by individual bolts in bolted joints[M]. Washington, D.C.:National Advisory Committee for Aeronautics, 1946.
[26] MCCARTHY C T, GRAY P J. An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints[J]. Composite Structures, 2011, 93(2):287-298.
[27] TAHERI-BEHROOZ F, SHAMAEI KASHANI A R, HEFZABAD R N. Effects of material nonlinearity on load distribution in multi-bolt composite joints[J]. Composite Structures, 2015, 125:195-201.
[28] 张岐良, 曹增强, 李红梅, 等. 干涉配合弹性强化机理分析[J]. 航空学报, 2018, 39(4):421687. ZHANG Q L, CAO Z Q, LI H M, et al. Elastic fatigue enhancement mechanism of interference fit[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):421687(in Chinese).
[29] CONTI P. Influence of geometric parameters on the stress distribution around a pin-loaded hole in a composite laminate[J]. Composites Science and Technology, 1986, 25(2):83-101.
[30] JIANG J F, BI Y B, DONG H Y, et al. Influence of interference fit size on hole deformation and residual stress in hi-lock bolt insertion[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(18):3296-3305.
[31] 宋丹龙, 宋旭峰, 白洋洋, 等. 碳纤维增强环氧树脂复合材料层合板干涉连接插钉轴向力建模与分析[J]. 复合材料学报, 2019,36(10):2294-2301. SONG D L, SONG X F, BAI Y Y, et al. Research on thrust force of CFRP laminates during the interference-fit bolt installation process[J]. Acta Materiae Compositae Sinica, 2019,36(10):2294-2301(in Chinese).
[32] ZOU P, LI Y, ZHANG K F, et al. Influence of interference-fit percentage on stress and damage mechanism in hi-lock pin installation process of CFRP[J]. Journal of Composite Materials, 2017, 51(25):3525-3538.
[33] JIANG J F, BI Y B. Effect of parameters on local stress field in single-lap bolted joints with the interference fit[J]. Advances in Mechanical Engineering, 2016, 8(5):168781401664725.
[34] KIM S Y, HE B, SHIM C S, et al. An experimental and numerical study on the interference-fit pin installation process for cross-ply glass fiber reinforced plastics (GFRP)[J]. Composites Part B:Engineering, 2013, 54:153-162.
[35] 张博平, 张开达. 层合板多钉机械连接载荷分配三维有限元分析[J]. 机械科学与技术, 1998(2):235-236. ZHANG B P, ZHANG K D. Three dimension finite element analysis for load distribution of multi fastener joints[J]. Mechanical Science and Technology, 1998(2):235-236(in Chinese).
[36] EKH J, SCHÖN J, MELIN L G. Secondary bending in multi fastener, composite-to-aluminium single shear lap joints[J]. Composites Part B:Engineering, 2005, 36(3):195-208.
[37] GUNNION A J, KŠRBER H, ELDER D J, et al. Development of fastener models for impact simulation of composite structures[C]//ICAS-Secretariat -25th Congress of the International Council of the Aeronautical Sciences, 2006.
[38] PEARCE G M, JOHNSON A F, THOMSON R S, et al. Experimental investigation of dynamically loaded bolted joints in carbon fibre composite structures[J]. Applied Composite Materials, 2010, 17(3):271-291.
[39] 刘勇, 陈世健, 高鑫, 等. 基于Hashin准则的单层板渐进失效分析[J]. 装备环境工程, 2010, 7(1):34-39. LIU Y, CHEN S J, GAO X, et al. Progressive failure analysis of monolayer composite based on hashin criterion[J]. Equipment Environmental Engineering, 2010, 7(1):34-39(in Chinese).
[40] 匡国强, 叶聪杰. 基于渐进损伤有限元的复材厚板连接分析[J]. 民用飞机设计与研究, 2015(1):32-38. KUANG G Q, YE C J. A study of thick composite laminates joints based on progressive failure FEM analysis[J]. Civil Aircraft Design & Research, 2015(1):32-38(in Chinese).
[41] 李沛城, 常楠, 赵美英, 等. 一种非线性模型下的复合材料螺栓连接失效分析[J]. 航空工程进展, 2019, 10(2):171-178. LI P C, CHANG N, ZHAO M Y, et al. The failure analysis of composite bolted joint structure based on a nonlinear model[J]. Advances in Aeronautical Science and Engineering, 2019, 10(2):171-178(in Chinese).
[42] 唐旭辉, 张顺琦, 应申舜, 等. 复合材料螺栓连接结构的失效行为[J]. 上海大学学报(自然科学版), 2019, 25(4):502-515. TANG X H, ZHANG S Q, YING S S, et al. Failure behavior for composite bolted joints[J]. Journal of Shanghai University (Natural Science Edition), 2019, 25(4):502-515(in Chinese).
[43] ZOU P, ZHANG K F, LI Y, et al. Bearing strength and failure analysis on the interference-fit double shear-lap pin-loaded composite[J]. International Journal of Damage Mechanics, 2018, 27(2):179-200.
[44] ZHAO L B, LI Y, ZHANG J Y, et al. A novel material degradation model for unidirectional CFRP composites[J]. Composites Part B:Engineering, 2018, 135:84-94.
[45] 刘斌, 赵亮, 徐红炉. 基于Hashin失效准则的复合材料螺栓连接损伤破坏研究[J]. 科学技术与工程, 2012, 12(8):1740-1744. LIU B, ZHAO L, XU H L. The research about damage of composite laminate in bolted joints based on the hashin failure criteria[J]. Science Technology and Engineering, 2012, 12(8):1740-1744(in Chinese).
[46] 徐红炉, 王富生, 岳珠峰. 失效准则和非线性对复合材料层合板螺栓连接失效强度的影响[J]. 强度与环境, 2008, 35(3):35-42. XU H L, WANG F S, YUE Z F. The effects of criterions and nonlinear on the failure strength for bolted joint in composite laminates[J]. Structure & Environment Engineering, 2008, 35(3):35-42(in Chinese).
[47] 贾利勇, 贾欲明, 贺高. 基于多尺度理论的复合材料厚板工程分析方法[J]. 航空科学技术, 2015, 26(9):37-41. JIA L Y, JIA Y M, HE G. An engineering analysis methodology for thick composite laminates using a multi-scale approach[J]. Aeronautical Science & Technology, 2015, 26(9):37-41(in Chinese).
[48] DEUSCHLE H M, PUCK A. Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress:Comparison with experimental results[J]. Journal of Composite Materials, 2013, 47(6-7):827-846.
[49] 黄昱翔, 黄向阳, 宋春生, 等. CFRP螺栓连接结构的渐进损伤研究和强度分析[J]. 复合材料科学与工程, 2020(3):44-52. HUANG Y X, HUANG X Y, SONG C S, et al. Progressive damage study and strength analysis of CFRP bolted joints[J]. Composites Science and Engineering, 2020(3):44-52(in Chinese).
[50] 孔祥宏, 王志瑾. 基于Abaqus的有限元渐进损伤强度分析[J]. 计算机应用与软件, 2012, 29(10):236-240. KONG X H, WANG Z J. Finite element incremental damage strength analysis based on Abaqus[J]. Computer Applications and Software, 2012, 29(10):236-240(in Chinese).
[51] TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1):58-80.
[52] 贾利勇, 廖斌斌, 于龙, 等. 基于Puck理论的复合材料层合板横向剪切失效分析[J]. 复合材料学报, 2019, 36(10):2286-2293. JIA L Y, LIAO B B, YU L, et al. Failure analysis of composite laminates with Puck's theory under transverse shear load[J]. Acta Materiae Compositae Sinica, 2019, 36(10):2286-2293(in Chinese).
[53] 赵丽滨, 秦田亮, 山美娟, 等. 基于渐进损伤分析的复合材料螺栓连接强度包线法研究[J]. 复合材料学报, 2015, 32(3):823-830. ZHAO L B, QIN T L, SHAN M J, et al. Progressive damage analysis based strength envelope method research for composite bolted joints[J]. Acta Materiae Compositae Sinica, 2015, 32(3):823-830(in Chinese).
[54] ZHAO L B, SHAN M J, LIU F R, et al. A probabilistic model for strength analysis of composite double-lap single-bolt joints[J]. Composite Structures, 2017, 161:419-427.
[55] SONG D L, ZHANG K F, LI Y, et al. Effect of interference percentage on damage mechanism of carbon fiber reinforced plastics laminate during interference-fit bolt installation[J]. Journal of Composite Materials, 2017, 51(8):1031-1043.
[56] LI J, LI Y, ZHANG K, et al. Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(11):1359-1371.
[57] ZHAO L B, SHAN M J, HONG H M, et al. A residual strain model for progressive fatigue damage analysis of composite structures[J]. Composite Structures, 2017, 169:69-78.
[58] ZHAO L B, QIN T L, ZHANG J Y, et al. 3D gradual material degradation model for progressive damage analyses of unidirectional composite materials[J]. Mathematical Problems in Engineering, 2015, 2015:1-11.
[59] MCCARTHY C T, MCCARTHY M A, LAWLOR V P. Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances[J]. Composites Part B:Engineering, 2005, 36(4):290-305.
[60] 贾利勇, 贾欲明, 于龙, 等. 基于多尺度模型的复合材料厚板G13剪切失效分析[J]. 复合材料学报, 2017, 34(4):558-566. JIA L Y, JIA Y M, YU L, et al. Failure analysis of thick composite laminates with multi-scale modelling under G13 out-of-plane shear loading[J]. Acta Materiae Compositae Sinica, 2017, 34(4):558-566(in Chinese).
[61] 魏景超, 矫桂琼, 闫照明, 等. 单面螺纹抽钉干涉配合复合材料连接件挤压强度研究[J]. 航空学报, 2013, 34(7):1627-1635. WEI J C, JIAO G Q, YAN Z M, et al. Bearing strength of composite joints interference-fitted with blind bolts[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1627-1635(in Chinese).
[62] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9):834-855.
[63] ZHANG J Y, QI D X, ZHOU L W, et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures, 2015, 133:331-342.
[64] LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149:408-422.
[65] KAPIDŽIĆ Z, ANSELL H, SCHÖN J, et al. Quasi-static bearing failure of CFRP composite in biaxially loaded bolted joints[J]. Composite Structures, 2015, 125:60-71.
[66] 吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1):94-104. WU Y T, YAO W X, WU F Q. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):94-104(in Chinese).
[67] SONG D L, LI Y, ZHANG K F, et al. Micromechanical analysis for microscopic damage initiation in fiber/epoxy composite during interference-fit pin installation[J]. Materials & Design, 2016, 89:36-49.
[68] HU J S, ZHANG K F, XU Y W, et al. Modeling on bearing behavior and damage evolution of single-lap bolted composite interference-fit joints[J]. Composite Structures, 2019, 212:452-464.
[69] 王成华, 杨阳, 康强, 等. 一种新型刚度退化模型及复合材料结构渐进损伤分析的通用方法实现[J]. 工程力学, 2016, 33(4):17-23. WANG C H, YANG Y, KANG Q, et al. A stiffness degradation model and a general method for progressive failure analysis of composite structures[J]. Engineering Mechanics, 2016, 33(4):17-23(in Chinese).
[70] 王娟, 施建伟, 张书亭, 等. 复合材料螺栓连接接头渐进损伤分析研究进展[J]. 航空制造技术, 2016, 59(3):85-89, 96. WANG J, SHI J W, ZHANG S T, et al. Research progress of progressive damage analysis of composite bolted joint[J]. Aeronautical Manufacturing Technology, 2016, 59(3):85-89, 96(in Chinese).
[71] 刘魏光, 余音, 汪海. 考虑剪切非线性的复合材料渐进损伤模型[J]. 上海交通大学学报, 2016, 50(2):194-199, 208. LIU W G, YU Y, WANG H. A damage model considering shear nonlinearity for progressive failure analysis of composite laminates[J]. Journal of Shanghai Jiao Tong University, 2016, 50(2):194-199, 208(in Chinese).
[72] 陈昆昆, 刘龙权, 汪海. 过盈配合和预紧力的混合作用对复合材料机械连接结构的影响及其机制[J]. 复合材料学报, 2013, 30(6):243-251. CHEN K K, LIU L Q, WANG H. Combined effects and mechanism of interference fit and clamping force on composite mechanical joints[J]. Acta Materiae Compositae Sinica, 2013, 30(6):243-251(in Chinese).
[73] ZHAO L B, GONG Y, ZHANG J Y, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures, 2014, 116:509-522.
[74] 董大龙, 周翔, 汪海, 等. 分层对复合材料机械连接结构承载能力的影响[J]. 复合材料学报, 2018, 35(1):61-69. DONG D L, ZHOU X, WANG H, et al. Bearing capacity of composite mechanical joint with hole delamination[J]. Acta Materiae Compositae Sinica, 2018, 35(1):61-69(in Chinese).
[75] ZOU P, LI Y, ZHANG K F, et al. Mode I delamination mechanism analysis on CFRP interference-fit during the installation process[J]. Materials & Design, 2017, 116:268-277.
[76] XU G H, CHENG H, ZHANG K F, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design, 2020, 194:108904.
[77] ZHANG K F, HU J S, ZOU P, et al. Effect of secondary bending and bolt load on damage and strength of composite single-lap interference-fit bolted structures[J]. Journal of Composite Materials, 2019, 53(28-30):4385-4398.
[78] GARNICH M R, AKULA V M K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites[J]. Applied Mechanics Reviews, 2009, 62(1):010801.
[79] 张俊琪, 刘龙权, 陈昆昆, 等. 干涉配合对复合材料机械连接结构承载能力的影响[J]. 上海交通大学学报, 2013, 47(11):1795-1800, 1806. ZHANG J Q, LIU L Q, CHEN K K, et al. Influence of bolt-hole interference fit conditions on load capacity in composite mechanical joints[J]. Journal of Shanghai Jiao Tong University, 2013, 47(11):1795-1800, 1806(in Chinese).
[80] STOFFELS M, MILLER D A, SAMBORSKY D, et al. Effects of tensile stresses on the moisture diffusion characteristics of epoxy glass composites[C]//32nd ASME Wind Energy Symposium. New York:ASME, 2014:0174.
[81] WANG J Z, DAI F H, MA L. A multi-scale moisture diffusion coupled with stress model for composite materials[J]. Composite Structures, 2017, 171:345-359.
[82] 张凯, 马艳, 杨世全, 等. 碳纤维复合材料的耐腐蚀性能[J]. 化学推进剂与高分子材料, 2009, 7(4):1-4, 9. ZHANG K, MA Y, YANG S Q, et al. Corrosion-resisting properties of carbon fiber composite materials[J]. Chemical Propellants & Polymeric Materials, 2009, 7(4):1-4, 9(in Chinese).
[83] 陆峰, 张晓云, 汤智慧, 等. 碳纤维环氧复合材料腐蚀行为的研究[J]. 材料工程, 2004, 32(4):16-19. LU F, ZHANG X Y, TANG Z H, et al. Study on the corrosion behavior of graphite epoxy composite materials[J]. Journal of Materials Engineering, 2004, 32(4):16-19(in Chinese).
[84] CAUICH-CUPUL J I, PÉREZ-PACHECO E, VALADEZ-GONZÁLEZ A, et al. Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites[J]. Journal of Materials Science, 2011, 46(20):6664-6672.
[85] WANG X, ZHAO X, WU Z S. Fatigue degradation and life prediction of basalt fiber-reinforced polymer composites after saltwater corrosion[J]. Materials & Design, 2019, 163:107529.
[86] 黄业青, 张康助, 王晓洁. T700碳纤维复合材料的海水腐蚀研究[J]. 材料开发与应用, 2007, 22(3):28-32. HUANG Y Q, ZHANG K Z, WANG X J. Research on durability of T700 carbon fiber composite in seawater[J]. Development and Application of Materials, 2007, 22(3):28-32(in Chinese).
[87] GAUTIER L, MORTAIGNE B, BELLENGER V. Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites[J]. Composites Science and Technology, 1999, 59(16):2329-2337.
[88] 南田田. 湿热环境下弯曲载荷对CFRP性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2013. NAN T T. Influence of bending load on the properties of CFRP under hygrothermal environment[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[89] LI H L, ZHANG K F, CHENG H, et al. Multi-stage mechanical behavior and failure mechanism analysis of CFRP/Al single-lap bolted joints with different seawater ageing conditions[J]. Composite Structures, 2019, 208:634-645.
[90] JIANG H, CONG Y J, ZHANG X, et al. Fatigue degradation after salt spray ageing of electromagnetically riveted joints for CFRP/Al hybrid structure[J]. Materials & Design, 2018, 142:297-307.
[91] YU Q Q, GAO R X, GU X L, et al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading[J]. Engineering Structures, 2018, 175:76-85.
[92] NGUYEN T C, BAI Y, ZHAO X L, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures, 2011, 93(6):1604-1612.
Outlines

/