Article

Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity

  • XU Yong ,
  • YIN Kuo ,
  • XIA Liangliang ,
  • MEN Xiangnan ,
  • ZENG Yipan ,
  • ZHANG Shihong
Expand
  • 1. China Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
    2. College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China;
    3. AVIC Chengdu Aircraft Industrial(Group) Co. Ltd., Chengdu 610092, China

Received date: 2020-10-09

  Revised date: 2020-10-28

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (51875548); Sichuan Science and Technology Program (2019YFSY0050)

Abstract

To realize one-step forming of aeronautical components of LY12 aluminum alloy sheets with thin wall and deep cavity by impact hydroforming, the response surface method combined with the impact hydroforming experiment was employed to optimize the process parameters. A model for the response between the response quantity and the optimization variable was established by taking the thinning rate and the sticking rate as the response quantity, and the blank holder force and impact force as optimization variables. The central composite design method was selected for experimental design, and experimental scheme was designed with the software of Design Expert 12. The first-order response model on the thinning rate and the second-order response model on the sticking rate were established. The optimization results show that when the blank holder force is 1.443 MPa and the impact force is 12.594 MPa, the requirements for thinning rate and filming rate can be reached at the same time. The relative error between the thinning rate and the predicted value is less than 5%. The results show that the proposed response surface model has good accuracy and predictability. The cylindrical components formed by the optimized process parameters meet the requirements on product quality.

Cite this article

XU Yong , YIN Kuo , XIA Liangliang , MEN Xiangnan , ZENG Yipan , ZHANG Shihong . Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524831 -524831 . DOI: 10.7527/S1000-6893.2020.24831

References

[1] 宋拥政, 舒鑫源, 李中守. 航空航天钣金冲压件制造技术[M]. 北京:机械工业出版社, 2013:16-18. SONG Y Z, SHU X Y, LI Z S. Manufacturing technology of aerospace sheet metal stamping parts[M]. Beijing:China Machine Press, 2013:16-18(in Chinese).
[2] 骞西昌, 杨守杰, 张坤, 等. 铝合金在运输机上的应用与发展[J]. 轻合金加工技术, 2005, 33(10):1-7. QIAN X C, YANG S J, ZHANG K, et al. Development and application of aluminum alloys on the transport planes[J]. Light Alloy Fabrication Technology, 2005, 33(10):1-7(in Chinese).
[3] 罗先甫, 查小琴, 夏申琳. 2×××系航空铝合金研究进展[J]. 轻合金加工技术, 2018, 46(9):17-25. LUO X F, ZHA X Q, XIA S L. Research progress of 2×××series aviation aluminum alloys[J]. Light Alloy Fabrication Technology, 2018, 46(9):17-25(in Chinese).
[4] 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9):1705-1715. LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9):1705-1715(in Chinese).
[5] ROHATGI A, SOULAMI A, STEPHENS E V, et al. An investigation of enhanced formability in AA5182-O Al during high-rate free-forming at room-temperature:Quantification of deformation history[J]. Journal of Materials Processing Technology, 2014, 214(3):722-732.
[6] AZARYAN N S, SHIRKOV G D, ZHURAUSKI A Y, et al. Manufacture of superconducting niobium cavity parts by hydropercussion punching[J]. Physics of Particles and Nuclei Letters, 2016, 13(2):218-223.
[7] HOMBERG W, DJAKOW E, AKST O, et al. Investigation of a pneumo-mechanical high speed forming process with respect to the forming of complex sheet and tube components[J]. Journal of Mechanical Engineering NTUU, 2013, 67(1):180-185.
[8] KHODKO O, ZAYTSEV V, SUKAYLO V, et al. Experimental and numerical investigation of processes that occur during high velocity hydroforming technologies:An example of tubular blank free bulging during hydrodynamic forming[J]. Journal of Manufacturing Processes, 2015, 20:304-313.
[9] 郎利辉, 王少华, 杨春雷, 等. 新型冲击充液复合成形工艺及其关键技术研究[J]. 锻压技术, 2014, 39(7):1-5. LANG L H, WANG S H, YANG C L, et al. Research of innovative hybrid impact hydroforming process and its key technology[J]. Forging & Stamping Technology, 2014, 39(7):1-5(in Chinese).
[10] 徐勇, 张士宏, 马彦, 等. 新型液压成形技术的研究进展[J]. 精密成形工程, 2016, 8(5):7-14. XU Y, ZHANG S H, MA Y, et al. Hydroforming technology:State-of-the-arts and recent developments[J]. Journal of Netshape Forming Engineering, 2016, 8(5):7-14(in Chinese).
[11] 张士宏, 程明, 宋鸿武, 等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1):1-11. ZHANG S H, CHENG M, SONG H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1):1-11(in Chinese).
[12] MA Y, XU Y, ZHANG S H, et al. Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming[J]. CIRP Annals, 2018, 67(1):281-284.
[13] ABD EL-ATY A, XU Y, ZHANG S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy[J]. Journal of Advanced Research, 2019, 18:19-37.
[14] CHEN D Y, XU Y, ZHANG S H, et al. A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming[J]. Journal of Materials Processing Technology, 2021, 287:116553.
[15] XU Y, ABD EL-ATY A, ZHANG S H, et al. Effect of novel impact hydroforming technology on the formability of Al alloys[J]. IOP Conference Series:Materials Science and Engineering, 2019, 651:012053.
[16] ZHANG S H, MA Y, XU Y, et al. Effect of impact hydroforming loads on the formability of AA5A06 sheet metal[J]. IOP Conference Series:Materials Science and Engineering, 2018, 418:012114.
[17] CHU T H, FUH K H, YEH W C. Experimental optimization of deep drawing using response surface methodology[J]. Applied Mechanics and Materials, 2011, 121-126:1495-1499.
[18] 卢松涛, 王培安. 基于响应面法和正交试验的墨顶盖翘曲变形优化[J]. 塑料, 2020, 49(4):65-68, 72. LU S T, WANG P A. Optimization of warpage deformation of ink cap based on response surface method and orthogonal experiment[J]. Plastics, 2020, 49(4):65-68, 72(in Chinese).
[19] 姜天亮, 龚红英, 施为钟, 等. 基于响应曲面法U形件弯曲成形工艺参数优化[J]. 上海工程技术大学学报, 2019, 33(3):278-282. JIANG T L, GONG H Y, SHI W Z, et al. Process parameters optimization of U-shaped bending based on response surface methodology[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3):278-282(in Chinese).
[20] BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1951, 13(1):1-38.
[21] HU W, ENYING L, YAO L G. Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology[J]. Journal of Materials Processing Technology, 2008, 206(1-3):45-55.
[22] 崔磊, 刘静, 李兰云. 基于响应面法的双层316L/Inconel625波纹管液压胀形工艺参数优化[J]. 兵器材料科学与工程, 2018, 41(6):19-26. CUI L, LIU J, LI L Y. Optimization of hydroforming process parameters of bi-layered 316L/Inconel625 bellows based on response surface method[J]. Ordnance Material Science and Engineering, 2018, 41(6):19-26(in Chinese).
[23] MUSAVI S H, DAVOODI B, ESKANDARI B. Evaluation of surface roughness and optimization of cutting parameters in turning of AA2024 alloy under different cooling-lubrication conditions using RSM method[J]. Journal of Central South University, 2020, 27(6):1714-1728.
[24] 胡成武, 李光, 毛远征, 等. 圆筒形件的拉深变形与应力分析[J]. 塑性工程学报, 2020, 27(3):130-136. HU C W, LI G, MAO Y Z, et al. Stress analysis and deformation of deep drawing for cylindrical part[J]. Journal of Plasticity Engineering, 2020, 27(3):130-136(in Chinese).
[25] 仇建桐, 邓沛然, 邵威, 等. 基于Dynaform的铝合金筒形件拉深成形[J]. 锻压技术, 2020, 45(5):49-55. QIU J T, DENG P R, SHAO W, et al. Deep drawing of cylindrical parts for aluminum alloy based on Dynaform[J]. Forging & Stamping Technology, 2020, 45(5):49-55(in Chinese).
[26] 陈绪国, 李继光, 张杰刚, 等. 2A12铝合金平底筒形件充液拉深数值模拟研究[J]. 精密成形工程, 2015, 7(6):86-91. CHEN X G, LI J G, ZHANG J G, et al. Numerical simulation of 2A12 aluminum flat bottom cylindrical part by hydromechanical deep drawing[J]. Journal of Netshape Forming Engineering, 2015, 7(6):86-91(in Chinese).
[27] 徐勇, 王震, 曾一畔, 等. LY12铝合金板材本构模型的构建及验证应用[J]. 塑性工程学报, 2020, 27(1):138-145. XU Y, WANG Z, ZENG Y P, et al. Establishment and verification of constitutive model of LY12 aluminum alloy sheet[J]. Journal of Plasticity Engineering, 2020, 27(1):138-145(in Chinese).
[28] LIU Y H, WANG J, WANG D H. Numerical optimization on hot forging process of connecting rods based on RSA with experimental verification[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):3129-3135.
[29] CHELLADURAI S J S, MURUGAN K, RAY A P, et al. Optimization of process parameters using response surface methodology:A review[J]. Materials Today:Proceedings, 2021, 37:1301-1304.
[30] WANG L, LEE T C. Controlled strain path forming process with space variant blank holder force using RSM method[J]. Journal of Materials Processing Technology, 2005, 167(2-3):447-455.
Outlines

/