Review

Aircraft intelligent design: Visions and key technologies

  • LI Ni ,
  • BU Shuhui ,
  • SHANG Bolin ,
  • LI Yongbo ,
  • TANG Zhili ,
  • ZHANG Weiwei
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-09-14

  Revised date: 2020-10-23

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (62003272); Equipment Pre-research Foundation (61400040503); Natural Science Fundamental Research Plan in Shaanxi Province of China (2020 JM-113); Research Funds for Interdisciplinary Subject, NWPU (19SH0304)

Abstract

Nowadays, the aircraft has been more and more autonomous and intelligent, and their missions have been more complex. Various types of aircraft have been developing, such as hyper sonic aircraft, highly stealth aircraft, and morphing aircraft. Thus, to fully achieve the comprehensive performance of the aircraft, an intelligent and multidisciplinary-integrated design process needs to be developed to improve the traditional decoupled design process. In this paper, the problems existing in the traditional aircraft design process are firstly discussed. Then, an intelligent and full-life-cycle aircraft design framework is proposed. In this closed-loop aircraft design framework, the knowledge base is applied to connect the stages of design, manufacturing, and operation and maintenance. The intelligent digital twin technology is employed to simulate, analyze and predict the states of aircraft, so as to update the data needed in the process of aircraft design and operation. The key technologies and basic scientific questions are discussed, and suggestions on the intelligent aircraft design process are given.

Cite this article

LI Ni , BU Shuhui , SHANG Bolin , LI Yongbo , TANG Zhili , ZHANG Weiwei . Aircraft intelligent design: Visions and key technologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 524752 -524752 . DOI: 10.7527/S1000-6893.2020.24752

References

[1] CAMBONE S A, KRIEG K J, PACE P, et al. Unmanned aircraft systems roadmap 2005-2030[J]. Office of the Secretary of Defense, 2005, 8:4-15.
[2] NATO.Science & technology trends 2020-2040[R].NATO, 2020
[3] WANG Z Y, ZHANG W W, WU X J, et al. A novel unsteady aerodynamic reduced-order modeling method for transonic aeroelastic optimization[J]. Journal of Fluids & Structures, 2018, 82:308-328.
[4] 石波. 飞机总体设计优化及软件开发[D]. 西安:西北工业大学, 2005. SHI B. Aircraft conceptual design and software development[D]. Xi'an:Northwestern Polytechnical University, 2005(in Chinese).
[5] 王晓青. 飞机总体参数设计与软件开发[D]. 西安:西北工业大学, 2003. WANG X Q. Aircraft conceptual parameters design and software development[D]. Xi'an:Northwestern Polytechnical University, 2003(in Chinese).
[6] 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39(11):222235. ZHOU J, GONG C L, SU H, et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222235(in Chinese).
[7] 符拯, 任晓军. 飞行器全寿命周期多学科设计体系及其关键技术[J]. 战术导弹控制技术, 2012, 29(2):51-55. FU Z, REN X J. Multidisciplinary design system and its key technologies for the entire life cycle of aircraft[J]. Tactical Missle Technology, 2012, 29(2):51-55(in Chinese).
[8] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013, 34(4):19-23. DENG Z H, LI Z F. The evolution of scientific research paradigm:the fourth paradigm of scientific research in the era of big data[J]. Information and Documentation Services, 2013, 34(4):19-23(in Chinese).
[9] 杨伟. 关于未来战斗机发展的若干讨论[J].航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese).
[10] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese).
[11] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences[R]. Washington, D.C.:NASA, 2014.
[12] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese).
[13] 李润泽, 张宇飞, 陈海昕. ‘人在回路’思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4):529-543. LI R Z, ZHANG F Y, CHEN X H. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543(in Chinese).
[14] 何开锋, 钱炜祺, 汪清, 等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报, 2014, 32(6):777-782. HE K F, QIAN W Q, WANG Q, et al. Application of data fusion technology in aerodynamics Research[J]. Acta Aerodynamica Sinica, 2014, 32(6):777-782(in Chinese).
[15] LUO C, HU Z, ZHANG S L, et al. Adaptive space transformation:An invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103.
[16] KOU J, ZHANG W. Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J]. Applied Mathematical Modelling, 2019, 76:832-855.
[17] 王刚. 高超声速粘性干扰效应数据关联方法研究[D].绵阳:中国空气动力研究与发展中心, 2016. WANG G. Research on data association method of hypersonic viscous interference effect[D]. Mianyang:China Aerodynamics Research and Development Center, 2016(in Chinese).
[18] LI D, ZHAO S, DA R A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100:46-62.
[19] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1):29-45. LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):29-45(in Chinese).
[20] LI K, KOU J, ZHANG W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-2177.
[21] WANG Z, ZHANG W, WU X, et al. A novel unsteady aerodynamic reduced-order modeling method for transonic aeroelastic optimization[J]. Journal of Fluids and Structures, 2018, 82:308-328.
[22] HUANG D, ROKITA T, FRIEDMANN P P. An aerothermoelastic analysis framework enhanced by model order reduction with applications[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference, 2017.
[23] CROWELL A R, MILLER B A, MCNAMARA J J. Robust and efficient treatment of temperature feed-back in fluid-thermal-structural analysis[J]. AIAA Journal, 2014, 52(11):2395-2413.
[24] MURAVYOV A A, RIZZI S A. Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[J]. Computers & Structures, 2003, 81(15):1513-1523.
[25] HUANG D, FRIEDMANN P P. An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows[J]. Journal of Fluids and Structures, 2020, 94:102927.
[26] 张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1):5-15. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thinking on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):5-15(in Chinese).
[27] LADICKY L, JEONG S, SOLENTHALER B, et al. Data-driven fluid simulation using regression forests[J]. ACM Transactions on Graphics, 2015, 34(6):199.
[28] GUO X X, LI W, LORIO F. Convolutional neural networks for steady flow approximation[C]//ACM Sig KDD International Conference, 2016:481-490.
[29] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11):1-10. LIU D T, GUO K, WANG B K, et al. Summery and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11):1-10(in Chinese).
[30] 李鹏, 潘凯, 刘小川. 美国空军机体数字孪生计划的回顾与启示[J]. 航空科学技术, 2020, 31(9):1-10. LI P, PAN K, LIU X C. Retrospect and enlightenment of the AFRL airframe digital twin program[J]. Aeronautical Science & Technology, 2020, 31(9):1-10(in Chinese).
[31] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2020, 41(3):023981. DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):023981(in Chinese).
[32] LI Y, WANG X, SI S, et al. Entropy based fault classification using the Case Western Reserve University data:A benchmark study[J]. IEEE Transactions on Reliability, 2020(2):754-767.
[33] 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力, 2019(4):70-74. LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power, 2019(4):70-74(in Chinese).
[34] 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7):7-17. SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):7-17(in Chinese).
[35] 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9):023615. MENG S H, YE Y G, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):023615(in Chinese).
[36] 陈伟, 朱保魁. 战斗机无人化难以破解的四个难题[J]. 飞航导弹, 2014(2):30-32. CHEN W, ZHU B K. Four difficult problems in unmanned fighter jets[J]. Aerodynamic Missile Journal, 2014(2):30-32(in Chinese).
[37] 吴立珍, 沈林成, 牛轶峰, 等. 无人机战场环境感知与理解技术研究[J]. 系统仿真学报, 2010, 22(S1):79-84. WU L Z, SHEN L C, NIU Y F, et al. Research on battle environmental sensing and perception methodology for unmanned aerial vehicle[J]. Journal of System Simulation, 2010, 22(S1):79-84(in Chinese).
[38] 符文星, 郭行, 闫杰. 智能无人飞行器技术发展趋势综述[J]. 无人系统技术, 2019, 2(4):31-37. FU W X, GUO X, YAN J. Overview on the technology development trend of intelligent unmanned aerial vehicle[J]. Unmanned Systems Technology, 2019, 2(4):31-37(in Chinese).
[39] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7):27-34. JIANG H K, SHAO H D, LI X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7):27-34(in Chinese).
[40] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56. LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56(in Chinese).
[41] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104(in Chinese).
[42] Gonzalesd. Network-centric warfare[J]. Betascript Publishing, 2010, 43(6):55-61.
[43] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6):1473-1486. WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese).
[44] 王琳. 飞行器射频隐身技术及发展思路[J]. 电讯技术, 2013, 53(8):973-976. WANG L. RF stealth technology and development thoughts on aviation platform[J]. Telecommunication Engineering, 2013, 53(8):973-976(in Chinese).
[45] WOLFIG R, JAKOVLJEVIC M. Distributed IMA and DO-297:Architectural, communication and certification attributes[C]//Digital Avionics Systems Conference, 2008.
[46] ANNIGHÖFER B, THIELECKE F. A systems architecting framework for optimal distributed integrated modular avionics architectures[J]. Ceas Aeronautical Journal, 2015, 6(3):485-496.
[47] 逯计划, 薛楠. 一种机载AFDX网络管理系统的研究与实现[J]. 信息通信, 2017(1):62-63. LU J H, XUE N. Research and implementation of an airborne AFDX network management system[J]. Information & Communications, 2017(1):62-63(in Chinese).
[48] 邢亮. 基于AADL的分布式综合模块化航电系统架构建模与分析[J]. 电光与控制, 2020, 27(2):64-69, 97. XING L. System architecture modeling and analysis of distributed integrated modular avionics based on AADL[J]. Electronics Optics & Control, 2020, 27(2):64-69, 97(in Chinese).
[49] 汤艳飞, 张伟栋. 综合核心处理机架构分析与设计[J]. 航空计算技术, 2020, 50(4):101-105. TANG Y F, ZHANG W D. Analysis and design of integrated core processor architecture[J]. Aeronautical Computing Technique, 2020, 50(4):101-105(in Chinese).
[50] 汪欣. 分布式综合模块化航电系统的建模与优化设计研究[D]. 南京:南京航空航天大学, 2018:1-12. WANG X. Research on the model and optimization method for distributed integrated modular avionics[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-12(in Chinese).
[51] TAHIR A, BLING J M, HAGHBAYAN M H, et al. Swarms of unmanned aerial vehicles-a survey[J]. Journal of Industrial Information Integration, 2019, 16:100106.
[52] CHEN W, LIU J, GUO H, et al. Toward robust and intelligent drone swarm:challenges and future directions. IEEE Network, 2020, 34(4):278-283.
[53] BAKKER T, KLENKE R H. Dynamic multi-task allocation for collaborative unmanned aircraft systems[C]//Aerospace Sciences Meeting, 2013.
[54] JONES D, TAMIZ M. Practical goal programming[M]. Boston:Springer US, 2010:481-483.
[55] CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018(4):1-19.
[56] 黄蓓, 朱黔, 马骏. 敏捷组态的常规飞行器指挥决策系统架构设计[J]. 指挥控制与仿真, 2020, 42(5):80-84. HUANG B, ZHU Q, MA J. Architecture design of maneuverable command and decision system for conventional aircraft[J]. Command Control & Simulation, 2020, 42(5):80-84(in Chinese).
[57] CHEN J, SUN J, WANG J, et al. Cooperative communication based on swarm intelligence:vision, model, and key technology[J]. Scientia Sinica Informationis. 2020, 50(3):307-317.
[58] KHELIFI H, LUO S, NOUR B, et al. Bringing deep learning at the edge of information-centric internet of things[J]. IEEE Communications Letters, 2019, 23(1):52-55.
[59] KOUSHIK A M, HU F, KUMAR S. Deep Q-learning based node positioning for throughput-optimal communications in dynamic UAV swarm network[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3):554-566.
[60] 吴微露, 丁亚非. 军用认知无线电通信系统关健技术研究[C]//2010年中国通信国际会议论文集. 南宁:中国通信学会, 2010. WU W L, DING Y F. Research on key technologies of military cognitive radio communication system[C]//2010 International Conference on Communications in China. Nanning:China Institute of Communications, 2010(in Chinese).
[61] 杨浩, 姜斌, 徐清. 编队控制的容错最短通信拓扑结构设计[C]//第八届中国多智能体系统与控制会议, 2012:27-32. YANG H, JIANG B, XU Q. Fault-tolerant shortest connection topology design for formation control[C]//MASC' 2012, 2012:27-32(in Chinese).
[62] PAUL S, PATTERSON S, VARELA C A. Collaborative situational awareness for conflict-aware flight planning[C]//IEEE/AIAA Digital Avionics Systems Conference, 2020.
[63] 梁晓龙, 胡利平, 张佳强, 等. 航空集群自主空战研究进展[J]. 科技导报, 2020, 38(15):74-88. LIANG X L, HU L P, ZHANG J Q, et al. Research status and prospect of aircraft swarms autonomous air combat[J]. Science & Technology Review, 2020, 38(15):74-88(in Chinese).
[64] 黄汉桥, 白俊强, 周欢, 等. 智能空战体系下无人协同作战发展现状及关键技术[J]. 导航与控制, 2019, 18(1):10-18. HUANG H Q, BAI J Q, ZHOU H, et al. Present situation and key technologies of unmanned cooperative operation under intelligent air combat system[J]. Navigation and Control, 2019, 18(1):10-18(in Chinses).
[65] 吴文海, 张源原, 周思羽, 等. 飞行员助手项目综述[J]. 航空学报, 2016, 37(12):3563-3577. WU W H, ZHANG Y Y, ZHOU S Y, et al. Overview of pilot's associate program[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3563-3577(in Chinese).
[66] 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术, 2018, 1(2):14-23. LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology, 2018, 1(2):14-23(in Chinese).
[67] 徐琳, 周自力, 艾尔, 等. 基于大数据的未来智能空战研究[J]. 飞航导弹, 2020(10):41-46. XU L, ZHOU Z L, AI E, et al. Research on future intelligent air combat based on big data[J]. Aerodynamic Missile Journal, 2020(10):41-46(in Chinese).
[68] 安世亚太流体产品业务部. ANSYS Fluent航空气动噪声解决方案[J]. 航空制造技术, 2012(9):95-96. Asia-pacific Fluid Products Business Division. ANSYS Fluent for aerodynamic noise solution[J]. Aeronautical Manufacturing Technology, 2012(9):95-96(in Chinese).
[69] 沈清, 杨武兵, 庄逢甘. 航天飞行器中的湍流问题[J]. 现代防御技术, 2012, 40(1):21-25. SHEN Q, YANG W B, ZHUANG F G. Turbulence of aerospacecraft[J]. Modern Refence Technology, 2012, 40(1):21-25(in Chinese).
[70] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377.
[71] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3):444-451. ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3):444-451(in Chinese).
[72] TENNEY A S, GLSAUSER M N, RUSCHER C J, et al. Application of artificial neural networks to stochastic estimation and jet noise modeling[J]. AIAA Journal, 2020, 58(2):647-658.
[73] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606. XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606(in Chinese).
[74] LI X D, ZHANG L. Knowledge graphs[J]. Chinese Journal of Engineering Mathematics, 2000(5):33-40.
[75] RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning:a survey on recent advances and trends[J]. IEEE Signal Processing Magazine, 2017, 34(6):96-108.
[76] 宋闯, 赵佳佳, 王康梁, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(S1):15-28. SONG C, ZHAO J J, WANG K L, et al. A survey of few shot learning based on intelligent perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):15-28(in Chinese).
[77] SUN Q, LIU Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[78] TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//International Conference on Artificial Neural Networks, 2018:270-279.
[79] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4):023732. WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms:review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):023732(in Chinese).
[80] 邹立岩, 张明智, 荣明. 智能无人机集群概念及主要发展趋势分析[J]. 战术导弹技术, 2019(5):1-11. ZHOU L Y, ZHANG M Z, RONG M. Analysis of intelligent unmanned aircraft systems swarm concept and main development trend[J]. Tactical Missile Technology, 2019(5):1-11(in Chinese).
[81] 许瑞明. 无人机集群作战涌现机理及优化思路研究[J]. 军事运筹与系统工程, 2018, 32(2):14-17. XU R M. A study on the emergence mechanism and optimization ideas of UAV swarm operations[J]. Military Operations Research and Systems Engineering, 2018, 32(2):14-17(in Chinese).
[82] 齐智敏, 黄谦, 张海林. 智能无人集群任务规划系统架构设计[J]. 军事运筹与系统工程, 2019, 33(3):26-30. QI Z M, HUANG Q, ZHANG H L. Architecture design of intelligent unmanned cluster mission planning system[J]. Military Operations Research and Systems Engineering, 2019, 33(3):26-30(in Chinese).
[83] 冉惟之. 基于群体智能的无人机集群协同对抗系统的设计与实现[D]. 成都:电子科技大学, 2020:1-8. RAN W Z. Design and implementation of cooperative adversarial system based on swarm intelligence for unmanned aerial vehicles[D]. Chengdu:University of Electronic Science and Technology of China, 2020:1-8(in Chinese).
[84] 关莹, 熊键, 陈鸣, 等. 集群作战能力涌现初探[J]. 电子信息对抗技术, 2019, 34(1):22-26. GUAN Y, XIONG J, CHEN M, et al. Primary study on ability emergence of swarms[J]. Electronic Information Warfare Technology, 2019, 34(1):22-26(in Chinese).
[85] 伊山, 黄谦, 杨鹏飞. 智能无人集群体系作战仿真系统功能与架构设计[J]. 指挥控制与仿真, 2020, 42(5):65-69. YI S, HUANG Q, YANG P F. Function and architecture design of intelligent unmanned cluster SoS operation simulation system[J]. Command Control & Simulation, 2020, 42(5):65-69(in Chinese).
[86] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25. DUAN H B, LI P. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25(in Chinese).
[87] 罗德林, 徐扬, 张金鹏. 无人机集群对抗技术新进展[J]. 科技导报, 2017, 35(7):26-31. LUO D L, XU Y, ZHANG J P. New progresses on UAV swarm confrontation[J]. Science & Technology Review, 2017, 35(7):26-31(in Chinese).
Outlines

/