Fluid Mechanics and Flight Mechanics

Unsteadiness of flow separation in an asymmetric supersonic nozzle

  • HE Chengjun ,
  • LI Jianqiang ,
  • HUANG Jiangtao ,
  • LI Yaohua ,
  • CHEN Xian
Expand
  • 1. China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-10-29

  Revised date: 2020-12-21

  Online published: 2020-12-18

Abstract

Using flow visualization and dynamic pressure measurement technology, the shock structure and dynamic pressure on the wall in an asymmetric supersonic nozzle with flow separation were experimentally measured. The time and frequency domain features of the wall pressure were analyzed to obtain the characteristics of the unsteady flow in different modes of flow separation inside the nozzle. The results show that when the Nozzle Pressure Ratio (NPR) increased from 1.8 to 12.70, the flow field structure inside the nozzle shifted from the downward to upward pattern. On the upper wall of the nozzle, there were three different modes of flow separation: Restricted Shock Separation (RSS), end effect, and Free Shock Separation (FSS). On the lower wall, the main mode of flow separation was FSS. In the RSS mode, the separation data began to deviate from the Schmucker’s criterion. In both the RSS and end effect modes, the wall in the intermittence region was under low-frequency pressure and the shock motion exhibited obvious low-frequency characteristics. In the end effect mode, the frequency value was slightly higher as the reattachment point comes in very close proximity to the nozzle lip, the separated shear layer impinges on the nozzle exit, and instability of the separated shear layer has obvious influence on motion of the separation shock.

Cite this article

HE Chengjun , LI Jianqiang , HUANG Jiangtao , LI Yaohua , CHEN Xian . Unsteadiness of flow separation in an asymmetric supersonic nozzle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 124930 -124930 . DOI: 10.7527/S1000-6893.2020.24930

References

[1] CAPONE F J, RE R J, BARE E A. Parametric investigation of single expansion ramp nozzles at Mach numbers from 0.60 to 1.20: NASA TP-3240[R]. Washington, D.C.: NASA, 1992.
[2] MITANI T, UEDA S, TANI K, et al. Validation studies of scramjet nozzle performance[J]. Journal of Propulsion and Power, 1993, 9(5): 725-730.
[3] MIRMIRANI M, WU C, CLARK A, et al. Modeling for control of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005.
[4] SUMMERFIELD M, FOSTER C, SWAN W. Flow separation in overexpanded supersonic exhaust nozzles[J]. Jet Propulsion, 1954, 24(9):319-321.
[5] NAVE L, COFFEY G. Sea level side loads in high-area-ratio rocket engines[C]//9th Propulsion Conference. Reston: AIAA, 1973.
[6] AHLBERG J H, HAMILTON S, MIGDAL D, et al. Truncated perfect nozzles in optimum nozzle design[J]. ARS Journal, 1961, 31(5): 614-620.
[7] RAO G V R. Exhaust nozzle contour for optimum thrust[J]. Journal of Jet Propulsion, 1958, 28(6): 377-382.
[8] RAO G V R. Approximation of optimum thrust nozzle contours[J]. ARS Journal, 1960, 30(6): 561.
[9] DUMNOV G E. Unsteady side-load acting on the nozzle with developed separation zone: AIAA-1996-3220[R]. Reston: AIAA, 1996.
[10] FREY M, HAGEMANN G. Status of flow separation prediction in rocket nozzles[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
[11] ÖSTLUND J, DAMGAARD T, FREY M. Side-load phenomena in highly overexpanded rocket nozzles[J]. Journal of Propulsion and Power, 2004, 20(4): 695-704.
[12] ENGBLOM W. Numerical prediction of SERN performance using wind code (invited)[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003.
[13] 谭杰, 金捷, 杜刚, 等. 过膨胀单边膨胀喷管试验和数值模拟[J]. 推进技术, 2009, 30(3): 292-296. TAN J, JIN J, DU G, et al. Experimental and computational investigation of a over-expanded single-expansion-ramp-nozzle[J]. Journal of Propulsion Technology, 2009, 30(3): 292-296(in Chinese).
[14] 谭杰, 金捷, 杜刚, 等. 单边膨胀喷管试验和数值模拟[J]. 航空动力学报, 2011, 26(6): 1223-1230. TAN J, JIN J, DU G, et al. Experimental and computational investigation of single-expansion-ramp-nozzle[J]. Journal of Aerospace Power, 2011, 26(6): 1223-1230(in Chinese).
[15] YU Y, XU J L, MO J W, et al. Principal parameters in flow separation patterns of over-expanded single expansion RAMP nozzle[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 274-288.
[16] YU Y, XU J L, WANG M T. The separation pattern transition phenomena and its effects on the SERN performance[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
[17] 徐惊雷, 张艳慧, 张堃元. 超燃冲压发动机非对称喷管非设计状态性能计算[J]. 推进技术, 2007, 28(3): 287-290. XU J L, ZHANG Y H, ZHANG K Y. Numerical simulation of single expansion ramp nozzle for scramjet on the off-design point[J]. Journal of Propulsion Technology, 2007, 28(3): 287-290(in Chinese).
[18] MOUSAVI S M, POURABIDI R, GOSHTASBI-RAD E. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle[J]. Acta Astronautica, 2018, 146: 273-281.
[19] 周莉, 肖华, 王占学, 等. 无源腔结构对大膨胀比单膨胀斜面喷管的影响[J]. 航空动力学报, 2015, 30(8): 1811-1817. ZHOU L, XIAO H, WANG Z X, et al. Effects of passive cavity on high pressure ratio single expansion ramp nozzle[J]. Journal of Aerospace Power, 2015, 30(8): 1811-1817(in Chinese).
[20] 周莉, 王占学, 肖华, 等. 带无源腔结构的单膨胀斜面喷管性能分析[J]. 工程热物理学报, 2015, 36(7): 1456-1460. ZHOU L, WANG Z X, XIAO H, et al. Performance analysis of single expansion ramp nozzle with passive cavity[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1456-1460(in Chinese).
[21] 贺旭照, 秦思, 周凯, 等. 比热比和压比对高超飞行器尾喷流影响的实验研究[J]. 实验流体力学, 2017, 31(1): 13-19. HE X Z, QIN S, ZHOU K, et al. Experimental study of the influence of the specific heat and pressure ratios on the hypersonic vehicle’s nozzle plume[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 13-19(in Chinese).
[22] 贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(3): 120199. HE X Z, QIN S, WEI F, et al. Test of non-uniform nozzle plume for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120199(in Chinese).
[23] 秦思, 贺旭照, 曾学军, 等. 喷流落压比对高超飞行器尾喷管内外流干扰的实验[J]. 航空动力学报, 2017, 32(10): 2491-2497. QIN S, HE X Z, ZENG X J, et al. Experiment of influence of the nozzle pressure ratio on the interaction between the external flow and nozzle flow of hypersonic aerocraft[J]. Journal of Aerospace Power, 2017, 32(10): 2491-2497(in Chinese).
[24] 莫建伟. TBCC排气系统设计方法及流场特性研究[D]. 南京: 南京航空航天大学, 2015. MO J W. Research on design method and flow charac-teristics of TBCC exhaust system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
[25] 何成军, 李建强, 范召林, 等. 单边膨胀喷管内流动分离非定常特性[J]. 航空动力学报, 2019, 34(11): 2339-2346. HE C J, LI J Q, FAN Z L, et al. Flow separation unsteadiness in single expansion ramp nozzle[J]. Journal of Aerospace Power, 2019, 34(11): 2339-2346(in Chinese).
[26] 何成军, 李建强, 范召林, 等. 过膨胀状态下单边膨胀喷管内壁面压力非定常特性试验研究[J]. 推进技术, 2020, 41(3): 537-543. HE C J, LI J Q, FAN Z L, et al. Experimental investigation of wall pressure unsteadiness in an over-expanded single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2020, 41(3): 537-543(in Chinese).
[27] SCHMUCKER R H. Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation: NASA-TM-77396[R]. Washington, D.C.: NASA, 1984.
[28] VERMA S B, MANISANKAR C. Origin of flow asymmetry in planar nozzles with separation[J]. Shock Waves, 2014, 24(2): 191-209.
[29] BARNHARDT P J, GREBER I. Experimental investiga-tion of unsteady shock wave turbulent boundary layer interactions about a blunt fin: NASA CR 202334[R]. Washington, D.C.: NASA, 2002.
[30] TAM C K W, SEINER J M, YU J C. Proposed relationship between broadband shock associated noise and screech tones[J]. Journal of Sound and Vibration, 1986, 110(2): 309-321.
[31] VERMA S, CHIDAMBARANATHAN M, HADJAD J A. Analysis of shock unsteadiness in a supersonic over-expanded planar nozzle[J]. European Journal of Mechanics - B/Fluids, 2018, 68: 55-65.
[32] DUSSAUGE J P, DUPONT P, DEBIÈVE J F. Unsteadiness in shock wave boundary layer interactions with separation[J]. Aerospace Science and Technology, 2006, 10(2): 85-91.
[33] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32.
[34] CHAPMAN D R, KUEHN D M, LARSON H K. Preliminary report on a study of separated flows in supersonic and subsonic streams: NACA RM-A55L14[R]. Washington, D.C.: NASA, 1956.
Outlines

/