Solid Mechanics and Vehicle Conceptual Design

Design implementation and error analysis of mass and centroid measurement of aircraft with wingspan

  • LIN Chuang ,
  • ZHENG Yu ,
  • GUANG Chenhan ,
  • WANG Yan ,
  • YANG Yang
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

Received date: 2020-10-16

  Revised date: 2020-12-29

  Online published: 2020-12-18

Supported by

Aerospace Science and Technology Fund of Aerospace Science and Industry Corporation(KZ37019701)

Abstract

To solve the problem that the traditional centroid measurement system based on three-sensor cannot be applied to the aerocraft with large wingspan, a mass centroid measurement system based on three-point is proposed, which has no requirements for the aerocraft rotation angle. To improve the measurement accuracy of system, the comprehensive influence of random errors on the system measurement accuracy is analyzed by the response surface method. Firstly, the mass and centroid measurement system of the aerocraft with wingspan is designed. Then, the mathematical derivation between random error and system measurement accuracy is given by using the random error transfer formula. Using the response surface method and the Latin hypercube sampling method, the quadratic term relational model between the random error and system measurement accuracy is obtained. Based on the quadratic term relational model and system accuracy index, the accuracy requirements of each component are obtained, and the range of the rotation angle satisfying the measurement error is analyzed. Finally, several measurements ae carried out on the three mass levels of 200 kg, 400 kg and 800 kg for different rotation angles, and the calculation results of response surface are compared with the theoretical values. The results show that the measurement accuracy of the centroid can meet the requirements of the system accuracy, demonstrating the validity of the method for any rotation angle and the correctness of the quadratic term relationship model between the random error and the measurement accuracy of the system.

Cite this article

LIN Chuang , ZHENG Yu , GUANG Chenhan , WANG Yan , YANG Yang . Design implementation and error analysis of mass and centroid measurement of aircraft with wingspan[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 224893 -224893 . DOI: 10.7527/S1000-6893.2020.24893

References

[1] 梁彦, 张驰, 梁明. 带翼展飞行器质量质心测量系统的设计实现及其误差分析[J]. 战术导弹技术, 2012(3): 29-35. LIANG Y, ZHANG C, LIANG M. Design realization and error analysis of mass measurement and centroid localization system for missiles[J]. Tactical Missile Technology, 2012(3): 29-35(in Chinese).
[2] 罗明强, 魏城龙, 刘虎, 等. 基于三维参数化模型构建的飞机重量重心快速估算方法[J]. 航空学报, 2013, 34(3): 566-573. LUO M Q, WEI C L, LIU H, et al. Rapidestimation method for aircraft weight and center of gravity based on 3-D parametric modeling[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 566-573(in Chinese).
[3] 王少云, 费泽寅. CX1型无人机称重仪[J]. 航空学报, 2005, 26(1): 70-73. WANG S Y, FEI Z Y. Theweighing instrument for CX1 unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 70-73(in Chinese).
[4] 金雪. 基于质量质心测量的称重仪数据采集及处理系统研制[D]. 哈尔滨: 哈尔滨工业大学, 2010. JIN X. The weighing instrument's dataacquisitionand processing system develop based on the qualityand centroid measurement[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
[5] 顾强, 李波. 弹体质量、质心及质偏的新三点测量法[J]. 弹箭与制导学报, 2005, 25(S9): 177-178, 201. GU Q, LI B. Newthree points measurement of column structure’s mass centroid and centroidal deviation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(Sup 9): 177-178, 201(in Chinese).
[6] 刘明勇, 罗锋, 徐健. 质量质心测量方法及实例分析[J]. 制造技术与机床, 2019(4): 138-141. LIU M Y, LUO F, XU J. Method ofmasscentroid measurement and case analysis[J]. Manufacturing Technology & Machine Tool, 2019(4): 138-141(in Chinese).
[7] 张鹰华, 樊新华, 张雷雨, 等. 基于四点支撑法的导弹质量质心测量系统设计及误差分析[J]. 机械设计与研究, 2016, 32(3): 96-99. ZHANG Y H, FAN X H, ZHANG L Y, et al. Thedesignand error analysis of A new mass and centroid measurement system for missiles based on four-point support approach[J]. Machine Design & Research, 2016, 32(3): 96-99(in Chinese).
[8] 李跃振. 大型带翼展飞行器质量与质心测量仪设计与开发[D].廊坊: 华北航天工业学院,2019. LI Y Z. Design anddevelopment of mass and centroid measuring instrument for large missile[D].Langfang: North China Institute of Aerospace Engineering, 2019(in Chinese).
[9] 王学仓. 导弹质量特性参数测量系统设计及分析[D]. 哈尔滨: 哈尔滨工业大学, 2014. WANG X C. Mass property parameters measurement systemof missile design and analysis[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[10] 傅德彬, 王飞, 王新星, 等. 低冲击弹射式发射箱前盖分离特性[J]. 宇航学报, 2016, 37(4): 488-493. FU D B, WANG F, WANG X X, et al. Separation characteristics for front cover of ejection launch canister with low impact[J]. Journal of Astronautics, 2016, 37(4): 488-493(in Chinese).
[11] 赵威, 王伟. 非线性偏最小二乘回归法在均匀设计响应面法中的应用[J]. 航空学报, 2012, 33(5): 839-847. ZHAO W, WANG W. Application ofnon-linear partial least squares regression method to response surface method with uniform design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 839-847(in Chinese).
[12] PEI J, WANG W J, YUAN S Q, et al. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5): 992-1002.
[13] ZHU H G, LIU L, LONG T, et al. Global optimization method using SLE and adaptive RBF based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 768-775.
[14] 郑昱, 孟凡伟, 杨占立, 等. 基于试验设计方法和响应面方法的九索并联机构优化设计[J]. 机械工程学报, 2017, 53(17): 92-102. ZHENG Y, MENG F W, YANG Z L, et al. Optimizationdesign of a parallel mechanism driven by nine cables based on experimental design methods and response surface methods[J]. Journal of Mechanical Engineering, 2017, 53(17): 92-102(in Chinese).
[15] 彭珍瑞, 曹明明, 刘满东. 基于加速度频响函数小波分解的模型修正方法[J]. 航空学报, 2020, 41(7): 223548. PENG Z R, CAO M M, LIU M D. Model updating method based on wavelet decomposition of acceleration frequency response function[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 223548(in Chinese).
[16] 胡春晓, 余光其. 舰炮武器系统动态精度海上测试方法与精度条件分析[J]. 指挥控制与仿真, 2020, 42(2): 84-88. HU C X, YU G Q. Testmethod and analysis on accuracy conditions at sea for dynamic accuracy of naval Gun weapon system[J]. Command Control & Simulation, 2020, 42(2): 84-88(in Chinese).
[17] 李琳, 夏学知, 熊紫倩, 等. 面向战役级目标态势生成的航迹关联算法[J]. 华中科技大学学报(自然科学版), 2020, 48(9): 31-37. LI L, XIA X Z, XIONG Z Q, et al. Targetassociation algorithm for operational level target situation generation[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(9): 31-37(in Chinese).
[18] 洪林雄, 李华聪, 彭凯, 等. 基于高效搜索方法的可靠性分析改进响应面法[J]. 北京航空航天大学学报, 2020, 46(1): 95-102. HONG L X, LI H C, PENG K,et al. Improved response surface method of reliability analysis based on efficient search method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 95-102(in Chinese).
[19] ZHANG F, CHENG L, WU M Y, et al. Performance analysis of two-stage thermoelectric generator model based on Latin hypercube sampling[J]. Energy Conversion and Management, 2020, 221: 113159.
[20] 张岳琴. 基于单摄像机的弹体位姿测量系统设计[D]. 南京: 南京理工大学, 2014. ZHANG Y Q.Design of missile pose measurement system based on single camera[D]. Nanjing: Nanjing University of Science and Technology, 2014(in Chinese).
Outlines

/