Solid Mechanics and Vehicle Conceptual Design

Influence of parameter estimates of Weibull distributions on detail fatigue rating

  • SONG Xin ,
  • SHEN Hua ,
  • CHEN Longbao ,
  • LI Tianyu
Expand
  • School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

Received date: 2020-09-16

  Revised date: 2020-10-16

  Online published: 2020-12-08

Supported by

Civil Aircraft Special Item of Ministry of Industry (MJZ-2017-F-13)

Abstract

When applying new materials and new processes to the structural design of civil aircraft, the Detail Fatigue Rating (DFR) method is still an important evaluation method. According to the fatigue test data of the new aluminum alloy, the influence of shape parameters of Weibull distributions on the DFR calculation parameters is comprehensively analyzed. When analyzing the influence of the slope parameter of standard S-N curves on the DFR, the change of the reliability life should be considered, and this influence of can be reduced by calculating the value of low reliability life. The differences between the DFR calculation based on different distribution parameter estimates and that based on the traditional Boeing’s given values are compared. The results show that for the experimental data that passed the conformity test, the DFR calculated by using the parameter estimation values of different Weibull distributions is greater than that calculated by the traditional method with the given value of Boeing Company. Among them, the DFR calculated by three parameter Weibull distribution is the largest, increasing by at least 10%.

Cite this article

SONG Xin , SHEN Hua , CHEN Longbao , LI Tianyu . Influence of parameter estimates of Weibull distributions on detail fatigue rating[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 224759 -224759 . DOI: 10.7527/S1000-6893.2020.24759

References

[1] 中国民用航空局. 运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2016. Civil Aviation Administration of China. Standards on the airworthiness of transport aircrafts:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2016(in Chinese).
[2] 郑晓玲. 民机结构耐久性与损伤容限设计手册(上册)[M]. 北京:航空工业出版社, 2003:209, 317-323, 333-335. ZHENG X L. Durability and damage tolerate design handbook on civil aviation aircraft structure (1st)[M]. Beijing:Aviation Industry Press, 2003:209, 317-323, 333-335(in Chinese).
[3] FABRIZIO D C, PIERLUIGI F, FRANCESCO V. Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J]. International Journal of Fatigue, 2017, 101(2):430-438.
[4] YUAN J R,WU J F. Harmonisation of F & DT models, Report 1:Proposal of fatigue models and methods:SP0801272[R]. Toulouse:Airbus Company, 2009.
[5] 张成成, 姚卫星, 叶彬.连接件疲劳寿命分析的等效SSF法[J]. 航空学报, 2009, 30(2):271-275. ZHANG C C, YAO W X, YE B. Equivalent stress severity factor approach for fatigue of multi-fastener plate[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2):271-275(in Chinese).
[6] 张天宇, 何宇廷, 陈涛, 等. 一种多钉铆接连接件的疲劳寿命分析方法[J]. 北京航空航天大学学报, 2018, 44(9):1933-1940. ZHANG T Y, HE Y T, CHEN T, et al. A fatigue life analysis method for multiple riveted joint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):1933-1940(in Chinese).
[7] 陈滨琦, 曾建江, 王一丁, 等. DFR法在结构疲劳优化设计中的应用[J]. 航空学报, 2013, 34(5):1122-1128. CHEN B Q, ZENG J J, WANG Y D, et al. Application of DFR method to optimal fatigue design of structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1122-1128(in Chinese).
[8] 雷晓欣, 张彦军, 纪露明, 等. 疲劳开裂结构等效分析谱构造方法[J]. 航空学报, 2017, 38(S1):721577. LEI X X, ZHANG Y J, JI L M, et al. Equivalent analysis spectrum construction method for aircraft structure containing crack[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721577(in Chinese).
[9] 张增焕, 陶汪, 张澐龙, 等. 机身壁板LBW结构DFR值试验测定及理论计算[J]. 哈尔滨工业大学学报, 2018, 50(11):17-22. ZHANG Z H, TAO W, ZHANG Y L, et al. DFR value testing and theoretical calculation on laser bean welded structures of fuselage panel[J]. Journal of Harbin Institute of Technology, 2018, 50(11):17-22(in Chinese).
[10] 郭翔, 刘建中, 胡本润, 等. 细节疲劳额定强度形状参数取值[J]. 航空材料学报, 2014, 34(2):77-83. GUO X, LIU J Z, HU B R, et al. Shape parameter in detail fatigue rating[J]. Journal of Aeronautical Materials, 2014, 34(2):77-83(in Chinese).
[11] 黄啸, 刘建中, 马少俊, 等. 细节疲劳额定强度计算参量取值敏感性研究[J]. 航空学报, 2012, 33(5):863-870. HUANG X, LIU J Z, MA S J, et al. Sensitivity analysis of the parameters in detail fatigue rating equation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5):863-870(in Chinese).
[12] 中华人民共和国国家质量监督检验检疫总局. 金属材料疲劳试验数据统计方案与分析方法:GB/T 24176-2009[S]. 北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Metallic materials-Fatigue testing-Statistical planning and analysis of data:GB/T 24176-2009[S]. Beijing:Standards Press of China, 2009(in Chinese).
[13] 董彦民, 刘文珽, 杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报, 2010, 21(12):2357-2364. DONG Y M, LIU W T, YANG C. Military aircraft durability design method based on detail fatigue rating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 21(12):2357-2364(in Chinese).
[14] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese).
[15] CLEMENT N L, LASKY R C. Weibull distribution and analysis:2019[C]//2020 Pan Pacific Microelectronics Symposium, 2020.
[16] 杨志忠, 刘瑞元. 三参数Weibull分布参数估计求法改进[J]. 工程数学学报, 2004, 21(2):267, 281-284. YANG Z Z, LIU R Y. Improved methods of the parameter estimating of 3-parameter Weibull distribution[J]. Journal of Engineering Mathematics, 2004, 21(2):267, 281-284(in Chinese).
[17] MURTHY D N P, BULMER M, ECCLESTON J A. Weibull model selection for reliability modeling[J]. Reliability Engineering & System Safety, 2004, 86(3):257-267.
[18] JOSE A M, ELOISA D F, GUDELIA F P. Estimation of the reliability parameter for three-parameter Weibull models[J]. Applied Mathematical Modelling, 2019, 67:621-633.
[19] 崔卫民, 薛红军, 喻天翔, 等. 试验数据服从Weibull分布时可靠性试验最少试件数的确定[J]. 机械工程学报, 2008, 41(1):51-55. CUI W M, XUE H J, YU T X, et al. Determination of sample size for Weibull distribution in structural reliability tests[J]. Chinese Journal of Mechanical Engineering, 2008, 41(1):51-55(in Chinese).
[20] 李晓雨. 三参数Weibull分布参数估计方法研究[D]. 北京:北京交通大学, 2012:1-2, 28. LI X Y. Research on estimation for the three-parameter Weibull distribution[D]. Beijing:Beijing Jiaotong University, 2012:1-2, 28(in Chinese).
[21] 杨天, 石健. 从MIL-HDBK-5 J到MMPDS-06发展变化的分析和思考[J]. 航空标准化与质量, 2014(2):47-50. YANG T, SHI J. Analysis and thinking on the development from MIL-HDBK-5 J to MMPDS-06[J]. Aeronautic Standardization & Quality, 2014(2):47-50(in Chinese).
[22] Federal Aviation Administration. Metallic materials properties development and standardization:MMPDS-05[S]. Columbus:Battelle Memorial Institute, 2010.
[23] 申桂香, 孟书, 张英芝, 等. 平均秩次法在子系统可靠性建模中的应用[J]. 吉林大学学报(工学版), 2014, 44(1):101-105. SHEN G X, MENG S, ZHANG Y Z, et al. Application of average rank time method in reliability modeling for subsystems[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1):101-105(in Chinese).
[24] SADANI S, ABDOLLAHNEZHAD K, TEIMOURI M, et al. A new estimator for Weibull distribution parameters:Comprehensive comparative study for Weibull distribution[DB/OL]. arXiv preprint:1902.05658, 2019.
Outlines

/