Review

Low-temperature plasma assisted machining: A review

  • LIU Jiyu ,
  • ZHANG Fan ,
  • CHEN Yang ,
  • JIN Zhuji ,
  • LIU Xin
Expand
  • School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2020-09-15

  Revised date: 2020-11-02

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (51975092); the Fundamental Research Funds for the Central Universities (DUT18JC19, DUT19ZD202)

Abstract

With the rapid development of the fields of aerospace, national defense technology and energy, high-strength alloy materials and composite materials with excellent mechanical properties have been widely used. It is of great significance to achieve high-efficiency, high-precision and low-damage machining of these materials. With a lot of active particles, low-temperature plasma can effectively improve material machinability, and is easier to generate, maintain and control; therefore, it has been widely applied in auxiliary machining of difficult-to-cut materials. The basic characteristics and classification of low-temperature plasma, as well as the state-of-the-art low-temperature plasma assisted machining technology at home and abroad, are introduced. Using the parameters of surface roughness, material removal rate, surface damage, and cutting force as evaluation indicators, the mechanisms and effects of plasma spray forming, plasma enhanced machining, cold plasma jet assisted polishing and cold plasma jet assisted cutting are discussed. The development trends of each technology are also discussed.

Cite this article

LIU Jiyu , ZHANG Fan , CHEN Yang , JIN Zhuji , LIU Xin . Low-temperature plasma assisted machining: A review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524754 -524754 . DOI: 10.7527/S1000-6893.2020.24754

References

[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8):809-815.
[2] WU G, CHAN K C, ZHU L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys[J]. Nature, 2017, 545(7652):80-83.
[3] BOWDEN D, KRYSIAK Y, PALATINUS L, et al. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications[J]. Nature Communications, 2018, 9:1374.
[4] 陈联国, 王文盛, 朱知寿, 等. 大规格损伤容限钛合金TC4-DT的研制及应用[J]. 航空学报, 2020, 41(6):523454. CHEN L G, WANG W S, ZHU Z S, et al. Development and application of large-scale damage tolerance titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523454(in Chinese).
[5] 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3):422494. HU X A, SHI D Q, YANG X G, et al. TMF constitutive and life modeling:From smooth specimen to turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):422494(in Chinese).
[6] 马腾才, 胡希伟,陈银华. 等离子体物理原理[M]. 合肥:中国科学技术大学出版社, 1988:2-10. MA T C, HU X W, CHEN Y H. Physical principles of plasma[M]. Hefei:University of Science and Technology of China Press, 1988:2-10(in Chinese).
[7] 刘新. 离子化气流辅助切削机理与应用基础研究[D]. 大连:大连理工大学, 2012:34,115,126. LIU X. Basic research on mechanism and application of ionized gas jet assisted cutting[D]. Dalian:Dalian University of Technology, 2012:34,115,126(in Chinese).
[8] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京:科学出版社, 2015:4-5. SHAO T, YAN P. Atmospheric pressure gas discharge and plasma application[M]. Beijing:Science Press, 2015:4-5(in Chinese).
[9] 列宾杰尔. 物理化学力学:一门新的科学领域[M].北京:中国工业出版社,1964:10-22 REHBINDER. Physico-chemical mechanics:A new scientific field[M].Beijing:China Industry Press, 1964:10-22(in Chinese).
[10] ANDRADE E N D C, RANDALL R F Y. The rehbinder effect[J]. Nature, 1949, 164(4183):1127.
[11] 曾好平. 熔射成形骤冷熔滴生长特性基础研究[D]. 大连:大连理工大学, 2007:4-6. ZENG H P. Research on the characteristics of quenching droplet growth in plasma spray forming[D]. Dalian:Dalian University of Technology, 2007:4-6(in Chinese).
[12] SAMPATH S, JIANG X. Splat formation and microstructure development during plasma spraying:Deposition temperature effects[J]. Materials Science and Engineering:A, 2001, 304-306:144-150.
[13] CHIDAMBARAM SESHADRI R, DWIVEDI G, VISWANATHAN V, et al. Characterizing suspension plasma spray coating formation dynamics through curvature measurements[J]. Journal of Thermal Spray Technology, 2016, 25(8):1666-1683.
[14] GILDERSLEEVE E J, SAMPATH S. Process-geometry interplay in the deposition and microstructural evolution of 7YSZ thermal barrier coatings by air plasma spray[J]. Journal of Thermal Spray Technology, 2020, 29(4):560-573.
[15] LEE H, HAN S J, SESHADRI R C, et al. Thermoelectric properties of in situ plasma spray synthesized sub-stoichiometry TiO2-x[J]. Scientific Reports, 2016, 6:36581.
[16] CHENG K C, CHEN J H, STADLER S, et al. Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process[J]. Applied Surface Science, 2019, 478:478-486.
[17] 徐文骥. 等离子熔射成形法制造零件技术的基础研究[D]. 大连:大连理工大学, 2000:50-73. XU W J. Basic study on the technology of plasma-spray forming parts[D]. Dalian:Dalian University of Technology, 2000:50-73(in Chinese).
[18] FANG J C, ZENG H P, XU W J, et al. Prediction of in-flight particle behaviors in plasma spraying[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 18(1-2):283.
[19] MAHADE S, CURRY N, BJÖRKLUND S, et al. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray[J]. Surface and Coatings Technology, 2017, 318:208-216.
[20] 解路, 熊翔, 王跃明, 等. 热等静压对等离子喷涂成形制备钼制品的影响[J]. 中南大学学报(自然科学版), 2011, 42(10):3009-3014. XIE L, XIONG X, WANG Y M, et al. Molybdenum products produced by plasma spray forming and hot-isostatic pressing[J]. Journal of Central South University (Science and Technology), 2011, 42(10):3009-3014(in Chinese).
[21] LAHA T, KUCHIBHATLA S, SEAL S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite[J]. Acta Materialia, 2007, 55(3):1059-1066.
[22] LAHA T, CHEN Y, LAHIRI D, et al. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(5):589-594.
[23] DAVOODI JAMALOEI A, SALIMIJAZI H R, EDRIS H, et al. Study of TLP bonding of Ti-6Al-4V alloy produced by vacuum plasma spray forming and forging[J]. Materials & Design, 2017, 121:355-366.
[24] WANG Y M, XIONG X, MIN X B, et al. Near-net-shape 95 W-3.5 Ni-1.5Fe thin-walled products produced by plasma spray forming[J]. Materials Science and Engineering:A, 2010, 527(21-22):5782-5789.
[25] PATEL R R, KESHRI A K, DULIKRAVICH G S, et al. An experimental and computational methodology for near net shape fabrication of thin walled ceramic structures by plasma spray forming[J]. Journal of Materials Processing Technology, 2010, 210(10):1260-1269.
[26] WANG Y M, XIONG X, ZHAO W Z, et al. Near-net-shape tungsten-rhenium alloy parts produced by plasma spray forming and hot isostatic pressing[J]. Materials Transactions, 2014, 55(4):713-721.
[27] WANG Y M, XIONG X, ZHAO Z W, et al. Thermal shock and ablation behavior of tungsten nozzle produced by plasma spray forming and hot isostatic pressing[J]. Journal of Thermal Spray Technology, 2015, 24(6):1026-1037.
[28] 徐玄, 顾进跃, 顾伟华, 等. 等离子喷涂成形技术的研究现状和应用进展[J]. 中国钨业, 2015, 30(3):43-51. XU X, GU J Y, GU W H, et al. Research status and application progress of plasma spray forming technology[J]. China Tungsten Industry, 2015, 30(3):43-51(in Chinese).
[29] 邓琦林, 徐文骥, 方建成, 等. 基于等离子熔射成形的快速制模实验研究[J]. 模具工业, 2000, 26(5):46-49. DENG Q L, XU W J, FANG J C, et al. Study by experiments on rapid manufacturing moulds based on plasma spraying forming[J]. Die & Mould Industry, 2000, 26(5):46-49(in Chinese).
[30] FANG J C, XU W J, ZHAO Z Y, et al. FGM mould with fine veins rapidly manufactured by plasma spraying[J]. Key Engineering Materials, 2005, 291-292:609-614.
[31] 张博, 王俊元, 芦琪, 等. 等离子喷焊法制备塑料模具强化层试验研究[J]. 热加工工艺, 2016, 45(14):136-138. ZHANG B, WANG J Y, LU Q, et al. Experimental study on reinforcing layer of plastic mold prepared by plasma spray welding[J]. Hot Working Technology, 2016, 45(14):136-138(in Chinese).
[32] SUN S, BRANDT M, DARGUSCH M S. Thermally enhanced machining of hard-to-machine materials-A review[J]. International Journal of Machine Tools and Manufacture, 2010, 50(8):663-680.
[33] DOGRA M, SHARMA V S. Techniques to improve the effectiveness in machining of hard to machine materials:A review[J]. International Journal of Research in Mechanical Engineering & Technology, 2013, 3(2):122-126.
[34] PARIDA A K, MAITY K. Hot machining of Ti-6Al-4V:FE analysis and experimental validation[J]. Sādhanā, 2019, 44(6):1-6.
[35] MOON S H, LEE C M. A study on the machining characteristics using plasma assisted machining of AISI 1045 steel and Inconel 718[J]. International Journal of Mechanical Sciences, 2018, 142-143:595-602.
[36] RAO T B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics[J]. Australian Journal of Mechanical Engineering, 2020:1-15.
[37] KHANI S, FARAHNAKIAN M, RAZFAR M R. Experimental study on hybrid cryogenic and plasma-enhanced turning of 17-4PH stainless steel[J]. Materials and Manufacturing Processes, 2015, 30(7):868-874.
[38] FEYZI T, SAFAVI S M. Improving machinability of Inconel 718 with a new hybrid machining technique[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8):1025-1030.
[39] FARAHNAKIAN M, RAZFAR M R. Experimental study on hybrid ultrasonic and plasma aided turning of hardened steel AISI 4140[J]. Materials and Manufacturing Processes, 2014, 29(5):550-556.
[40] LESHOCK C E, KIM J N, SHIN Y C. Plasma enhanced machining of Inconel 718:Modeling of workpiece temperature with plasma heating and experimental results[J]. International Journal of Machine Tools and Manufacture, 2001, 41(6):877-897.
[41] LEE Y H, LEE C M. A study on optimal machining conditions and energy efficiency in plasma assisted machining of Ti-6Al-4V[J]. Materials, 2019, 12(16):2590.
[42] CHEN S H, TSAI K T. The study of plasma-assisted machining to Inconel-718[J]. Advances in Mechanical Engineering, 2017, 9(12):168781401773578.
[43] SHAO-HSIEN C, TSAI K T. Predictive analysis for the thermal diffusion of the plasma-assisted machining of superalloy inconel-718 based on exponential smoothing[J]. Advances in Materials Science and Engineering, 2018, 2018:1-9.
[44] CHEN X D, QIU H H. Bubble dynamics and heat transfer on a wettability patterned surface[J]. International Journal of Heat and Mass Transfer, 2015, 88:544-551.
[45] CHEN R K, LU M C, SRINIVASAN V, et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters, 2009, 9(2):548-553.
[46] DENG H, YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing[J]. CIRP Annals, 2013, 62(1):575-578.
[47] YAMAMURA K, TAKIGUCHI T, UEDA M, et al. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface[J]. CIRP Annals, 2011, 60(1):571-574.
[48] DENG H, MONNA K, TABATA T, et al. Optimization of the plasma oxidation and abrasive polishing processes in plasma-assisted polishing for highly effective planarization of 4H-SiC[J]. CIRP Annals, 2014, 63(1):529-532.
[49] DENG H, YAMAMURA K. Smoothing of reaction sintered silicon carbide using plasma assisted polishing[J]. Current Applied Physics, 2012, 12:S24-S28.
[50] DENG H, UEDA M, YAMAMURA K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4):1-7.
[51] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1):353-356.
[52] SUN R Y, YANG X, ARIMA K, et al. High-quality plasma-assisted polishing of aluminum nitride ceramic[J]. CIRP Annals, 2020, 69(1):301-304.
[53] DENG H, ENDO K, YAMAMURA K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface[J]. CIRP Annals, 2015, 64(1):531-534.
[54] BASTAWROS A F, CHANDRA A, POOSARLA P A. Atmospheric pressure plasma enabled polishing of single crystal sapphire[J]. CIRP Annals, 2015, 64(1):515-518.
[55] 刘新, 黄帅, 瞿娇娇, 等. 304不锈钢离子化气流辅助切削试验[J]. 农业机械学报, 2014, 45(5):334-339, 346. LIU X, HUANG S, QU J J, et al. Experiment on ionized gas jet assisted cutting of 304 stainless steel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):334-339, 346(in Chinese).
[56] XU W J, LIU X, SONG J L, et al. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet[J]. Applied Surface Science, 2012, 259:616-623.
[57] LIU X, ZHANG F, LIU J Y, et al. Atmospheric pressure plasma-assisted precision turning of pure iron material[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5187-5197.
[58] 黄帅. 冷等离子体辅助金刚石切削黑色金属基础研究[D]. 大连:大连理工大学, 2017:87-101. HUANG S. Research on diamond cutting of ferrous metals assisted by cold plasma[D]. Dalian:Dalian University of Technology, 2017:87-101(in Chinese).
[59] HUANG S, LIU X, CHEN F Z, et al. Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):673-681.
[60] XU W J, HUANG S, CHEN F Z, et al. Diamond wear properties in cold plasma jet[J]. Diamond and Related Materials, 2014, 48:96-103.
[61] KATAHIRA K, OHMORI H, TAKESUE S, et al. Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide[J]. CIRP Annals, 2015, 64(1):129-132.
[62] 刘硕. TC4钛合金大气压冷等离子体射流辅助微铣削研究[D]. 大连:大连理工大学, 2018:32-47. LIU S. Research on atmospheric pressure cold plasma jet assisted micro-milling TC4 titanium alloy[D]. Dalian:Dalian University of Technology, 2018:32-47(in Chinese).
[63] MUSTAFA G, LIU J Y, ZHANG F, et al. Atmospheric pressure plasma jet assisted micro-milling of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12):4681-4687.
[64] LIU J Y, CHEN Y, ZHANG J C, et al. Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1-2):191-199.
Outlines

/