Solid Mechanics and Vehicle Conceptual Design

SMA bump hysteresis modeling and control strategy

  • CHEN Xuliang ,
  • ZHANG Chen ,
  • JI Hongli ,
  • QIU Jinhao
Expand
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-08-18

  Revised date: 2020-11-11

  Online published: 2020-12-08

Supported by

National Natural Science Foundation of China (11532006 & 51775267); Natural Science Foundation of Jiangsu Province (BK20181286); Equipment Pre-Research Foundation (61402100103); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

Shock Control Bump (SCB) is a flow control method for shock drag reduction. To solve the problem of the narrow working range of the fixed deflection bump, we propose a Shape Memory Alloy (SMA) bump with two-way memory effect to change deflection by controlling the temperature. The maximum recoverable displacement of the SMA bump is 6.1 mm, which is 2.65% of the deformation area of the bump. To reduce the influence of the hysteresis when controlling the deflection, we use the Krasnosel'skii-Pokrovskii (KP) model to model the temperature/deflection hysteresis of the SMA bump. The particle swarm algorithm is adopted to identify the parameters of the hysteresis model. The maximum error of the identified hysteresis model is 0.107 mm. Two PID control schemes based on the KP model are designed, one being single-target PID control without hysteresis compensation, and the other being dual-target PID control with the hysteresis inverse model feedforward compensation. Simulation and experimental results show that the time-domain performance of the dual-target PID control with the hysteresis inverse model feedforward compensation is better than the single-target PID control without hysteresis compensation.

Cite this article

CHEN Xuliang , ZHANG Chen , JI Hongli , QIU Jinhao . SMA bump hysteresis modeling and control strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 224652 -224652 . DOI: 10.7527/S1000-6893.2020.24652

References

[1] BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5):451-471.
[2] STANEWSKY E, DÉLERY J, FULKER J, et al. Assessment of shock control-A summary[M]//Notes on Numerical Fluid Mechanics (NNFM). Wiesbaden:Vieweg+Teubner Verlag, 1997:76-77.
[3] STANEWSKY E, DÉLERY J, FULKER J, et al. Drag reduction by shock and boundary layer control[M]. Berlin:Springer Berlin Heidelberg,2002.
[4] 李沛峰, 张彬乾, 陈迎春, 等. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报, 2011, 32(6):971-977. LI P F, ZHANG B Q, CHEN Y C, et al. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese).
[5] JINKS E R, BRUCE P J, SANTER M J. Adaptive shock control bumps[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:0945.
[6] LAGOUDAS D C. Shape memory alloys:Modeling and engineering applications[M]. Berlin:Springer, 2008.
[7] LESTER B T, BAXEVANIS T, CHEMISKY Y, et al. Review and perspectives:Shape memory alloy composite systems[J]. Acta Mechanica, 2015, 226(12):3907-3960.
[8] MOHD J J, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design (1980-2015), 2014, 56:1078-1113.
[9] 聂瑞, 裘进浩, 季宏丽, 等. 自适应鼓包气动构型优化与结构概念设计[J]. 工程热物理学报, 2017, 38(9):1896-1905. NIE R, QIU J H, JI H L, et al. Aerodynamic configuration optimization and structural concept design of adaptive bump[J]. Journal of EngineeringThermophysics, 2017, 38(9):1896-1905(in Chinese).
[10] PREISACH F.Vber die magnetische nachwirkung[J]. Zeitschrift Für Physik, 1935, 94(5-6):277-302.
[11] SU C Y, WANG Q Q, CHEN X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12):2069-2074.
[12] WEBB G V, LAGOUDAS D C, KURDILA A J. Hysteresis modeling of SMA actuators for control applications[J]. Journal of Intelligent Material Systems and Structures, 1998, 9(6):432-448.
[13] LIU Y H, FENG Y, DU J, et al. Adaptive dynamicsurface control of a class of nonlinear systems with unknown duhem hysteresis[C]//Intelligent Robotics and Applications, 2012.
[14] NGUYEN B K, AHN K K. Feedforward control of shape memory alloy actuators using fuzzy-based inverse preisach model[J]. IEEE Transactions on Control Systems Technology, 2009, 17(2):434-441.
[15] FENG Y, RABBATH C A, HONG H, et al. Inverse hysteresis control for shape memory alloy micro-actuators based flap positioning system[C]//49th IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2010:3662-3667.
[16] LIU Y H, FENG Y, CHEN X K. Robust adaptive dynamic surface control for a class of nonlinear dynamical systems with unknown hysteresis[J]. Abstract and Applied Analysis, 2014, 2014:1-10.
[17] MAI H H, SONG G B, LIAO X F. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network[J]. Smart Materials and Structures, 2012, 22(1):015001.
[18] 郝林. 形状记忆合金鼓包力学特性研究[D]. 南京:南京航空航天大学, 2018. HAO L. Research on mechanical properties of shape memory alloy bump[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks,2002.
[20] 刘金琨. 先进PID控制MATLAB仿真[M]. 2版. 北京:电子工业出版社, 2004. LIU J K.MATLAB simulation of advanced PID control[M].2nd ed. Beijing:Publishing House of Electronics Industry, 2004(in Chinese).
Outlines

/