Solid Mechanics and Vehicle Conceptual Design

Fast analysis method of deflection efficiency for thrust axial-symmetric vectoring exhaust nozzle

  • ZHANG Zhe ,
  • WANG Hanping ,
  • JIN Wendong ,
  • ZHANG Baozhen ,
  • CHENG Mengwen
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2020-06-19

  Revised date: 2020-08-18

  Online published: 2020-12-08

Abstract

A simplified algorithm of flexible curve-curve high constraint between the convergence skeleton and the A8 roller is proposed. Based on this algorithm and the Craig-Bampton modal synthesis method, a rigid-flexible coupled dynamics model of the Axisymmetric Vectoring Exhaust Nozzle (AVEN) is constructed. The equivalent simplification and real-time loading of the thermal aerodynamic loads are then realized according to the superposition principle and energy equivalence principle. The error between the calculation result based on this algorithm and the experiment is about 4%, showing high credibility. The comparison of simulation results between the model using this algorithm and the model using contacts show that the former was more stable and more efficient with the same precision. It could reduce the simulation cost of a single case from three days to half an hour. Aiming at the two typical states of AVEN, we compare the contributions of the flexibility of key components to the deflection efficiency. The results indicate that flexibility of A9 ring is the main influencing factor of the deflection efficiency, accounting for up to 94%. It is shown that the rigid-flexible coupling model only considering the flexibility of A9 ring would be a more efficient and rapid estimation method for the deflection efficiency simulation of AVEN.

Cite this article

ZHANG Zhe , WANG Hanping , JIN Wendong , ZHANG Baozhen , CHENG Mengwen . Fast analysis method of deflection efficiency for thrust axial-symmetric vectoring exhaust nozzle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 224429 -224429 . DOI: 10.7527/S1000-6893.2020.24429

References

[1] 王玉新. 喷气发动机轴对称推力矢量喷管[M]. 北京:国防工业出版社, 2006:17-18. WANG Y X. Axian-symmetric vectoring exhaust nozzle for jet-thrust-aircraft[M]. Beijing:National Defense Industry Press, 2006:17-18(in Chinese).
[2] 王莉, 袁茹, 王三民, 等. 温固耦合下轴对称推力矢量喷管驱动机构的运动精度分析[J]. 机械科学与技术, 2008, 27(6):752-756. WANG L, YUAN R, WANG S M, et al. Kinematic precision analysis of axial-symmetric vectoring exhaust nozzle with coupling of temperature and structure[J]. Mechanical Science and Technology, 2008, 27(6):752-756(in Chinese).
[3] 吕雪燕, 罗艳春, 姜晓莲. 推力矢量技术的应用及影响[J]. 科技资讯, 2012, 2(5):118. LV X Y, LUO Y C, JIANG X L. The application and effect of thrust vectoring technology[J]. Science and Technology Information, 2012, 2(5):118(in Chinese).
[4] 李晓明, 伏宇. 轴对称矢量喷管机构优化设计[J]. 燃气涡轮试验与研究, 2006, 19(3):1-5. LI X M, FU Y. Optimum design of AVEN mechanism[J]. Gas Turbine Experiment and Research, 2006, 19(3):1-5(in Chinese).
[5] 杨玉颖. 航空轴对称推力矢量控制技术研究[D]. 西安:西北工业大学, 2000:6-15. YANG Y Y. Study on control technique of aeroengine axial-symmetric vectoring exhaust nozzle[J]. Xi'an:Northwestern Polytechnical University, 2000:6-15(in Chinese).
[6] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6):524057. WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524057(in Chinese).
[7] 刘铭达, 赵志刚, 石广田, 等. 轴对称矢量喷管A8面运动学分析与求解[J]. 机械科学与技术, 2016, 35(6):975-979. LIU M D, ZHAO Z G, SHI G T, et al. Analysis and solving for kinematics of A8 area of axial-symmetric vectoring exhaust nozzle[J]. Mechanical Science and Technology, 2016, 35(6):975-979(in Chinese).
[8] 李有德, 赵志刚, 孟佳东, 等. 轴对称矢量喷管喉道运动学精确建模研究[J]. 机械科学与技术, 2016, 35(11):1785-1790. LI Y D, ZHAO Z G, MENG J D, et al. Precision kinematic model for throat of axisymmetric vectorexhaust nozzle[J]. Mechanical Science and Technology, 2016, 35(11):1785-1790(in Chinese).
[9] 李维维, 赵志刚, 刘洋,等. 基于三环驱动的轴对称矢量喷管运动学与力学分析[J]. 机械研究与应用, 2018, 31(2):43-45. LI W W, ZHAO Z G, LIU Y, et al. Kinematics and mechanical analysis of the axial-symmetric vectoring exhaust nozzle based on three-ring driving[J]. Mechanical Research and Application, 2018, 31(2):43-45(in Chinese).
[10] 赵志刚, 李建鹏, 刘洋, 等. 三环驱动轴对称推力矢量喷管逆运动学分析[J]. 航空动力学报, 2018, 33(1):24-29. ZHAO Z G, LI J P, LIU Y, et al. Analysis on inverse kinematics of the three rings supporting and driving axial-symmetric vectoring exhaust nozzle[J]. Journal of Aerospace Power, 2018, 33(1):24-29(in Chinese).
[11] 霍树林, 赵志刚, 闫世洲. 冷态轴对称矢量喷管非矢量状态运动学研究[J]. 机械科学与技术, 2019, 38(10):1619-1625. HUO S L, ZHAO Z G, YAN S Z. Studying non-vector kinematics of cold axisymmetric vector exhaust nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10):1619-1625(in Chinese).
[12] 王鑫, 武建新. 轴对称矢量喷管动力学仿真与分析[J]. 机械设计与制造, 2013(10):106-109. WANG X, WU J X. Dynamic simulation and analysis of axisymmetric vectoring exhaust nozzle[J]. Machinery Design & Manufacture, 2013(10):106-109(in Chinese).
[13] 闫世洲, 赵志刚, 霍树林. 轴对称矢量喷管喷口Lagrange动力学分析[J]. 机械科学与技术, 2019, 38(5):809-815. YAN S Z, ZHAO Z G, HUO S L. Lagrange dynamics analysis of axisymmetric vector nozzle[J]. Mechanical Science and Technology, 2019, 38(5):809-815(in Chinese).
[14] 郭秩维, 白广忱, 高阳. 轴对称矢量喷管机构弹性动力学分析[J]. 航空发动机, 2006(1):31-34. GUO Z W, BAI G C, GAO Y. Elastodynamic analysis of axisymmetric vectoring exhaust nozzle[J]. Aeroengine, 2006(1):31-34(in Chinese).
[15] 王汉平, 张煜冰, 杨鸣. 轴对称推力矢量喷管冷态多柔体动力学仿真[J]. 航空动力学报, 2011, 26(11):2427-2432. WANG H P, ZHANG Y B, YANG M. Flexible multi-body dynamics simulation of cold state axial-symmetric vectoring exhaust nozzle[J]. Journal of Aerospace Power, 2011, 26(11):2427-2432(in Chinese).
[16] 王林鹏, 王汉平, 杨鸣,等. 复杂空间机构热态刚柔耦合多体动力学建模[J]. 四川兵工学报, 2013, 34(9):78-81. WANG L P, WANG H P, YANG M, et al. Rigid-flexible coupling multi-body dynamics modeling in hot state of complex space system[J]. Journal of Sichuan Ordnance, 2013, 34(9):78-81(in Chinese).
[17] 李建榕, 白伟. 喷管偏转对航空发动机特性影响的试验[J]. 航空动力学报, 2016, 31(5):1212-1218. LI J R, BAI W. Experiment on influences of nozzle deflection on aeroengine characteristic[J]. Journal of Aerospace Power, 2016, 31(5):1212-1218(in Chinese).
[18] 巩明. 矢量喷管的刚柔耦合自动建模开发和偏转效率分析[D]. 北京:北京理工大学, 2015:58-74. GONG M. Automatic modeling development and deflection efficiency analysis of flexible and rigid coupled multi-body dynamics for vectoring exhaust nozzle mechanism[D]. Beijing:Beijing Institute of Technology, 2015:58-74(in Chinese).
[19] 王汉平, 张昊, 徐子豪,等. 一种应用于柔性线线高副约束简化模型的实现方法:CN107688684A[P]. 2018-02-13. WANG H P, ZHANG H, XU Z H, et al. A realization method of simplified model for flexible curve-to-curve high-pair constraints:CN107688684A[P]. 2018-02-13(in Chinese).
[20] 王林鹏, 王汉平, 杨鸣, 等. 运动导弹激励下柔性导轨振动的多体动力学分析法[J]. 航空学报, 2014, 35(3):756-763. WANG L P, WANG H P, YANG M, et al. Multi-body dynamics analysis method for vibration of flexible guide activated by moving missile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):756-763(in Chinese).
[21] 关玉璞, 陈伟, 崔海涛. 航空航天结构有限元法[M]. 哈尔滨:哈尔滨工业大学出版社, 2009:32-34. GUAN Y P, CHEN W, CUI H T. The finite element method in aeronautic and astronautic structures[M]. Harbin:Harbin Institute of Technology Press, 2009:32-34(in Chinese).
[22] 王缅, 郑钢铁. 一种改进的固定界面模态综合法[J]. 宇航学报, 2012, 33(3):291-297. WANG M, ZHENG G T. An improved fixed-interface modal synthesis method[J]. Journal of Astronautics, 2012, 33(3):291-297(in Chinese).
[23] CRAIG R R, BAMPTON M C. Coupling of substructures for dynamic analysis[J]. AIAA Journal, 1968, 6(7):1313-1319.
[24] HURTY W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4):678-685.
Outlines

/