To verify the flow control and drag reduction effects of plasma synthetic jets on supersonic flows, we fit the plasma thermodynamic properties and transport coefficients in the case of considering the thermally perfect gas effect, and use the energy source term model to simulate the typical flow field structures such as the supersonic flat plate and sphere, yielding consistent results with those of the experiment. The results show that the plasma synthetic jet can effectively disturb the development of the boundary layer and induce a series of large-scale structures for a supersonic flow of Mach number 2 over a plate; for a supersonic flow of Mach number 3 over a sphere, the plasma synthetic jet can significantly change the shock separation distance and the drag of the sphere. In the first cycle after discharge, the average drag of the sphere can be reduced by 6.3%, while the drag is reduced by 32.0% when the jet reaches a peak value, and the shock separation distance is increased by two times, realizing the expected effect of shock control and drag reduction.
[1] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[2] ROTH J, SHERMAN D, WILKINSON S. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma:AIAA-1998-0328[R]. Reston:AIAA, 1998.
[3] POST M, CORKE T. Separation control using plasma actuators-Stationary & oscillating airfoils:AIAA-2004-0841[R]. Reston:AIAA, 2004.
[4] IM S, DO H, CAPPELLI M A. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow[J]. Applied Physics Letters, 2010, 97(4):041503.
[5] GNEMMI P, REY C. Plasma actuation for the control of a supersonic projectile[J]. Journal of Spacecraft and Rockets, 2009, 46(5):989-998.
[6] OSTMAN R, HERGES T, CRAIG DUTTON J, et al. Effect on high speed boundary layer characteristics from plasma actuators:AIAA-2013-0527[R]. Reston:AIAA, 2013.
[7] GREENE B, CLEMENS N, MICKA D. Control of shock boundary layer interaction using pulsed plasma jets:AIAA-2013-0405[R]. Reston:AIAA, 2013.
[8] GROSSMAN K, BOHDAN C, VANWIE D.Sparkjet actuators for flow control:AIAA-2003-0057[R]. Reston:AIAA, 2003.
[9] CYBYK B, GROSSMAN K, WILKERSON J. Performance characteristics of the SparkJet flow control actuator:AIAA-2004-2131[R]. Reston:AIAA, 2004.
[10] CYBYK B, GROSSMAN K, WILKERSON J, et al. Single-pulse performance of the SparkJet flow control actuator:AIAA-2005-0401[R]. Reston:AIAA, 2005.
[11] 张宇. 基于等离子体高能合成射流的快响应直接力技术研究[D]. 长沙:国防科学技术大学, 2014. ZHANG Y. Study on fast-response direct force technology based on plasma high energy synthetic jet[D]. Changsha:National University of Defense Technology, 2014(in Chinese).
[12] 刘朋冲, 李军, 贾敏, 等. 等离子体合成射流激励器的流场特性分析[J]. 空军工程大学学报(自然科学版), 2011, 12(6):22-25. LIU P C, LI J, JIA M, et al.Investigation on flow filed of the plasma synthetic jet device[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(6):22-25(in Chinese).
[13] 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(3):551-557. SHAN Y, ZHANG J Z, TAN X M. Numerical study of the flow characteristics and excitation parameters for thesparkjet actuator[J]. Journal of Aerospace Power, 2011, 26(3):551-557(in Chinese).
[14] LV Y W, SHAN Y, ZHANG J Z, et al. A numerical investigation of the sparkjet actuator in multiple-shot mode[J]. Procedia Engineering, 2015, 99:1514-1525.
[15] 顾仁勇, 单勇, 张靖周, 等. 火花型合成射流控制运输机后体流动分离的数值研究[J]. 航空动力学报, 2018, 33(8):1855-1863. GU R Y,SHAN Y, ZHANG J Z, et al. Numerical study on transport aircraft after-body flow separation control by spark jet[J]. Journal of Aerospace Power, 2018, 33(8):1855-1863(in Chinese).
[16] 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙:国防科学技术大学, 2014. WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha:National University of Defense Technology, 2014(in Chinese).
[17] 周岩, 刘冰, 王林, 等. 两电极等离子体合成射流性能及出口构型影响仿真研究[J]. 空气动力学学报, 2015, 33(6):799-805. ZHOU Y, LIU B, WANG L, et al. Numerical simulation of performance characteristics of two-electrode plasma synthetic jet and the influence of different actuator orifice shapes[J]. Acta Aerodynamica Sinica, 2015, 33(6):799-805(in Chinese).
[18] 周岩, 刘冰, 罗振兵, 等. 火花放电合成射流与超声速来流相互干扰特性数值模拟研究[J]. 空气动力学学报, 2016, 34(4):511-516. ZHOU Y, LIU B, LUO Z B, et al. Numerical simulation of interaction of spark discharge synthetic jet with supersonic flow[J]. Acta Aerodynamica Sinica, 2016, 34(4):511-516(in Chinese).
[19] CAPITELLI M, COLONNA G, GORSE C, et al. Transport properties of high temperature air in local thermodynamic equilibrium[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2000, 11(2):279-289.
[20] GUPTA R N, LEE K P, THOMPSON R A, et al. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K:NASA RP-1260[R]. Washington, D.C.:NASA, 1991.
[21] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1):3-51.
[22] ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of three-electrode SparkJet actuator for hypersonic flow control[J]. AIAA Journal, 2019, 57(2):879-885.
[23] 李洋, 吴云, 宗豪华, 等. 三电极等离子体合成射流的尖尖放电特性[J]. 高电压技术, 2016, 42(3):828-835. LI Y, WU Y,ZONG H H, et al. Characteristics of sharp discharge of three-electrode plasma synthetic jet[J]. High Voltage Engineering, 2016, 42(3):828-835(in Chinese).