Material Engineering and Mechanical Manufacturing

Development of buckling model and failure criterion of sandwich structure

  • CAO Pengyu ,
  • NIU Kangmin
Expand
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2020-08-26

  Revised date: 2020-09-07

  Online published: 2020-11-20

Supported by

Fundamental Research Funds for the Central Universities (FRF-MP-18-006)

Abstract

There exist many theoretical models for predicting the critical buckling values of sandwich structures under compression/bending loads. In these models, few researcher has taken into account the effect of transverse shear on the face layers during buckling. In addition, the characteristics of the existing buckling formulas are as follows: classic formulas are simple in form but have low prediction accuracy and a narrow range of applications, and thus not convenient for users; some models s have high accuracy but complex forms, and are not convenient for direct engineering application. In this paper, we establish a new theoretical model for solving the problem of buckling based on the elastic theory. In the new model, the transverse shear effect of the face layer is taken into account for the first time, and the influence of shear effect on the buckling load is evaluated. By simplifying the exact solutions in different buckling wavelength ranges, we establish the approximate solution models, and then the accuracy and applicability of these approximate solutions are determined. Finally, a new failure criterion for determining the buckling of sandwich structure is established. The new criterion leads to better prediction precision and is concise, and is thus easy to be applied in engineering.

Cite this article

CAO Pengyu , NIU Kangmin . Development of buckling model and failure criterion of sandwich structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 424669 -424669 . DOI: 10.7527/S1000-6893.2020.24669

References

[1] 张少实. 新编材料力学[M]. 2版. 北京:机械工业出版社, 2010:300-303. ZHANG S S. New material mechanics:Material mechanics[M]. 2nd ed. Beijing:China Machine Press, 2010:300-303(in Chinese).
[2] ALLEN H G. Analysis and design of structural sandwich panels[M]. Oxford:Pergamon Press, 1969.
[3] 丁运亮, 刘毅. 夹层结构前机身有限元分析与优化设计[J]. 航空学报, 1993, 14(10):510-514. DING Y L, LIU Y. Finite element analysis and optimum design for the front-fuselage with sandwich construction[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(10):510-514(in Chinese).
[4] 胡培. 飞机夹层结构的设计和泡沫芯材的选择[J]. 航空制造技术, 2010, 53(17):94-96. HU P. Design of sandwich structure and selection of foam core material for aircraft[J]. Aeronautical Manufacturing Technology, 2010, 53(17):94-96(in Chinese).
[5] 汤超, 陈秀华, 汪海. 泡沫夹层结构力学性能的非线性有限元分析[J]. 力学季刊, 2009, 30(2):273-280. TANG C, CHEN X H, WANG H. Analysis for mechanical properties of foam cored sandwich based on nonlinear FEM[J]. Chinese Quarterly of Mechanics, 2009, 30(2):273-280(in Chinese).
[6] 王华吉. 复合材料蜂窝夹层结构制备及其力学性能分析[D]. 哈尔滨:哈尔滨工业大学, 2010. WANG H J. Study on preparation and mechanical property of composite sandwich constructions[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese).
[7] 王兴业. 夹层结构复合材料设计原理及其应用[M]. 北京:化学工业出版社, 2007. WANG X Y. Design principle and application of sandwich composite materials[M]. Beijing:Chemical Industry Press, 2007(in Chinese).
[8] 李汪颖, 杨雄伟, 李跃明. 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016, 37(4):1196-1206. LI W Y, YANG X W, LI Y M. Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1196-1206(in Chinese).
[9] 周华志, 王志瑾. M-型皱褶芯材夹层板吸能性能研究[J]. 航空学报, 2016, 37(2):579-587. ZHOU H Z, WANG Z J. Analysis of energy absorption capability of M-type folded core sandwich structure[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):579-587(in Chinese).
[10] 陈晓, 周贤宾. 夹层板精密成形的数值模拟[J]. 航空学报, 2000, 21(5):442-445. CHEN X, ZHOU X B. Numerical simulation for the precise forming of sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(5):442-445(in Chinese).
[11] 许泽, 陈业标, 魏曾. 复合材料夹层结构的弯扭稳定性[J]. 航空学报, 1994, 15(2):222-227. XU Z, CHENG Y B, WEI Z. Buckling of composite sandwich construction under twisting and bending moments[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(2):222-227(in Chinese).
[12] PLANTEMA F J. Sandwich construction:The bending and buckling of sandwich beams, plates and shells[M]. New York:Wiley, 1966.
[13] LÉOTOING L, DRAPIER S, VAUTRIN A. First applications of a novel unified model for global and local buckling of sandwich columns[J]. European Journal of Mechanics-A/Solids, 2002, 21(4):683-701.
[14] CAO P Y, NIU K M. New unified model of composite sandwich panels/beams buckling introducing interlayer shear effects[J]. Composite Structures, 2020, 252:112722.
[15] NIU K M, TALREJA R. Modeling of wrinkling in sandwich panels under compression[J]. Journal of Engineering Mechanics, 1999, 125(8):875-883.
[16] NIU K M. Compressive behavior of sandwich panels and laminates with damage[D]. Atlanta:Georgia Institute of Technology, 1998.
[17] JASION P, MAGNUCKA-BLANDZI E, SZYC W, et al. Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core[J]. Thin-Walled Structures, 2012, 61:154-161.
[18] DOUVILLE M A, LE GROGNEC P. Exact analytical solutions for the local and global buckling of sandwich beam-columns under various loadings[J]. International Journal of Solids and Structures, 2013, 50(16-17):2597-2609.
[19] TIMOSHENKO S P, GOODIER J N. Theory of elasticity[M]. 3rd ed. New York:McGraw-Hill Book Company, 1970.
[20] SIMITSES G J, HUTCHINSON J W. An introduction to the elastic stability of structures[J]. Journal of Applied Mechanics, 1976, 43(2):383-384.
[21] DAVIES J M. Design criteria for sandwich panels for building construction[J]. ASME Publications, 1997, 55:273-284.
[22] ZENKERT D. An introduction to sandwich construction[M]. Solihull:Engineering Materials Advisory Services Ltd., 1995.
[23] SMITH M. ABAQUS/Standard user's manual. Version 6.9[M]. Providence:Simulia, 2009.
Outlines

/