Electronics and Electrical Engineering and Control

Guidance method for maneuvering target interception based on virtual look angle constraint

  • WANG Yaning ,
  • WANG Hui ,
  • LIN Defu ,
  • YUAN Yifang
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;
    3. Unit 63961 of Chinese People’s Liberation Army, Beijing 100012, China

Received date: 2020-09-27

  Revised date: 2020-11-23

  Online published: 2020-11-13

Supported by

National Natural Science Foundation of China(U1613225); Open Project Fund of "Beijing Key Laboratory of High Dynamic Navigation Technology"(HDN2020101)

Abstract

To enable the missile to intercept one maneuvering target with a certain terminal attack angle, a guidance method for interception of the maneuvering target with terminal virtual look angle and terminal line-of-sight angle constraints is proposed. According to the transform relationship between the motion vectors in the velocity coordinates system, the nonlinear model of relative motion in the virtual coordinates system is established. Then, the thought of polynomial guidance in the linear model is introduced into the nonlinear model creatively. Through the constraints of the terminal virtual look angle and the terminal line-of-sight angle, the solution of the polynomial virtual control variable of the distance between the missile and the target is derived. Finally, according to the transformation relation between the virtual vectors and the motion vectors, the acceleration command expression in the velocity coordinates system is obtained. Simulations under the conditions of different guidance coefficients, terminal attack angles and types of maneuvering targets are carried out to verify the method proposed. The simulation results are compared with those of the optimal guidance law of Trajectory Shaping Guidance. Simulation results show that the proposed guidance lawallows the missile to intercept the maneuvering target with a desired attack angle and the terminal virtual look angle converges to zero, which can avoid terminal command saturation.

Cite this article

WANG Yaning , WANG Hui , LIN Defu , YUAN Yifang . Guidance method for maneuvering target interception based on virtual look angle constraint[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 324799 -324799 . DOI: 10.7527/S1000-6893.2020.24799

References

[1] ZARCHAN P. Tactical and strategic missile guidance, sixth edition[M]. Reston: AIAA, Inc., 2012.
[2] SIOURIS G M. Guided weapon control systems[J]. Proceedings of the IEEE, 1983, 71(12): 1465-1466.
[3] ZANG L Y, LIN D F, CHEN S Y, et al. An on-line guidance algorithm for high L/D hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2019, 89: 150-162.
[4] QIN D Z, ZHANG J S, PEI S Y, et al. Prediction of Point of impact of anti-ship missile—An approach combining target geometic features, circular error probable(CEP) and laser fuze[J]. Optik, 2020, 202: 163587.
[5] 杨哲. 多约束末制导律与目标状态估计方法研究[D]. 北京: 北京理工大学, 2017. YANG Z. Research on multi-constrainted terminal guidance laws and target state estimation methods[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
[6] CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight[C]//Astrodynamics Guidance and Control Conference. Reston: AIAA, 1964: 638.
[7] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[8] RYOO C K, KIM H J, TAHK M J, et al. Optimal guidance law: Impact angle & terminal lateral acceleration control[J]. IFAC Proceedings Volumes, 2009, 42(2): 321-325.
[9] LEE Y I, RYOO C K, KIM E. Optimal guidance with constraints on impact angle and terminal acceleration[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 5795.
[10] KIM M, GRIDER K V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(6): 852-859.
[11] HE S M, LEE C H. Optimal impact angle guidance for exoatmospheric interception utilizing gravitational effect[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1382-1392.
[12] LEE C H, TAHK M J, LEE J I. Generalized formulation of weighted optimal guidance laws with impact angle constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1317-1322.
[13] YUN J, RYOO C K, SONG T L. Strapdown sensors and seeker based guidance filter design[C]//2008 International Conference on Control, Automation and Systems. Piscataway: IEEE Press, 2008: 468-472.
[14] PARK B G, KIM T H, TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker’s look angle limits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1241-1256.
[15] WANG H, WANG J, LIN D F. Generalized optimal impact-angle-control guidance with terminal acceleration response constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(14): 2515-2536.
[16] WANG H, LIN D F, CHENG Z X, et al. Optimal guidance of extended trajectory shaping[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1259-1272.
[17] LI R, WEN Q Q, TAN W C, et al. Adaptive weighting impact angle optimal guidance law considering seeker’s FOV angle constraints[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 142-151.
[18] SONG C, RYOO C K, TAHK M J, et al. Optimal guidance law for impact angle control[J]. IFAC Proceedings Volumes, 2004, 37(6): 653-658.
[19] 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856(in Chinese).
[20] 王辉, 林德福, 祁载康, 等. 扩展弹道成型末制导律特性分析与应用研究[J]. 兵工学报, 2013, 34(7): 801-809. WANG H, LIN D F, QI Z K, et al. Analysis and application study on the extended trajectory shaping guidance law[J]. Acta Armamentarii, 2013, 34(7): 801-809(in Chinese).
[21] LEE C H, KIM T H, TAHK M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.
[22] KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2806-2817.
[23] ZHOU Z M, YAO X X. Polynomial guidance law for impact angle control with a seeker look angle limit[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(3): 857-870.
[24] SHIM S W, HONG S M, MOON G H, et al. Time-to-go polynomial guidance with impact angle constraint for missiles of time-varying velocity[J]. International Journal of Mechanical Engineering and Robotics Research, 2017, 6(1): 65-70.
[25] MOON G H, TAHK M J, HAN D H, et al. Generalized polynomial guidance for terminal velocity control of tactical ballistic missiles[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(1): 163-175.
[26] 杨哲, 林德福, 王辉. 带视场角限制的攻击时间控制制导律[J]. 系统工程与电子技术, 2016, 38(9): 2122-2128. YANG Z, LIN D F, WANG H. Impact time control guidance law with field-of-view limit[J]. Systems Engineering and Electronics, 2016, 38(9): 2122-2128(in Chinese).
[27] 臧路尧, 侯淼, 王辉, 等. 一种适用于红外制导弹药的变增益比例导引律[J]. 红外与激光工程, 2017, 46(5): 0504004. ZANG L Y, HOU M, WANG H, et al. A switched-gain proportional navigation applicable for infrared guidance munitions[J]. Infrared and Laser Engineering, 2017, 46(5): 0504004(in Chinese).
[28] 马帅, 王旭刚, 王中原, 等. 带初始前置角和末端攻击角约束的偏置比例导引律设计以及剩余飞行时间估计[J]. 兵工学报, 2019, 40(1): 68-78. MA S, WANG X G, WANG Z Y, et al. BPNG law with arbitrary initial lead angle and terminal impact angle constraint and time-to-go estimation[J]. Acta Armamentarii, 2019, 40(1): 68-78(in Chinese).
[29] 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2): 724277. LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraints based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277(in Chinese).
[30] 高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报, 2014, 34(3): 277-282. GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 277-282(in Chinese).
[31] KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.
[32] YANG Z, WANG H, LIN D F. Time-varying biased proportional guidance with seeker's field-of-view limit[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-11.
[33] RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1817-1822.
[34] RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.
[35] 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5): 323606. AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323606(in Chinese).
[36] 王荣刚, 唐硕. 拦截高速运动目标广义相对偏置比例制导律[J]. 西北工业大学学报, 2019, 37(4): 682-690. WANG R G, TANG S. Intercepting higher-speed targets using generalized relative biased proportional navigation[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 682-690(in Chinese).
[37] 闫梁, 赵继广, 沈怀荣, 等. 带末端碰撞角约束的三维联合偏置比例制导律设计[J]. 航空学报, 2014, 35(7): 1999-2010. YAN L, ZHAO J G, SHEN H R, et al. Three-dimensional united biased proportional navigation guidance law for interception of targets with angular constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1999-2010(in Chinese).
[38] 穆忠伟, 吴剑, 韩秀枫. 基于偏置比例导引的垂直攻击滑模制导律[J]. 导航定位与授时, 2019, 6(6): 76-81. MU Z W, WU J, HAN X F. A variable structure guidance law for vertical attack based on bias proportional navigation[J]. Navigation Positioning and Timing, 2019, 6(6): 76-81(in Chinese).
[39] 穆忠伟, 吴剑, 何诚, 等. 偏置比例导引律在空地作战中的应用[J]. 指挥与控制学报, 2019, 5(4): 339-343. MU Z W, WU J, HE C, et al. New biased proportional guidance law application in air to ground combat[J]. Journal of Command and Control, 2019, 5(4): 339-343(in Chinese).
[40] 郭正玉, 韩治国. 基于快速非奇异终端滑模的多弹协同制导律设计[J]. 航空兵器, 2020, 27(3): 62-66. GUO Z Y, HAN Z G. Multi-missile cooperative guidance law design based on fast non-singular terminal sliding mode[J]. Aero Weaponry, 2020, 27(3): 62-66(in Chinese).
[41] 张宽桥, 杨锁昌, 刘畅. 基于ESO的拦截机动目标带攻击角度约束制导律[J]. 弹道学报, 2019, 31(4): 8-14. ZHANG K Q, YANG S C, LIU C. ESO-based guidance law with impact angle constraint for maneuvering targets[J]. Journal of Ballistics, 2019, 31(4): 8-14(in Chinese).
[42] ZHOU H B, SHEN-MINI S, XU M Y, et al. Design of terminal sliding-mode guidance law with attack angle constraints[C]//201325th Chinese Control and Decision Conference(CCDC). Piscataway: IEEE Press, 2013: 556-560.
[43] YANG Z, WANG H, LIN D F, et al. A new impact time and angle control guidance law for stationary and nonmaneuvering targets[J]. Inventi Impact-Aerospace Engineering, 2017, 2017: 14.
[44] YUN Y H, TANG S J, GUO J, et al. Adaptive sliding-mode guidance with terminal angle constraints based on explicit space engagement model[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference(CGNCC). Piscataway: IEEE Press, 2016: 1144-1147.
[45] ZHAO J, ZHOU J. Fixed-time second order sliding mode guidance law for interceptors with impact angle constraints[C]//2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference(IMCEC). Piscataway: IEEE Press, 2019:1010-1014.
[46] 司玉洁, 熊华, 宋勋, 等. 三维自适应终端滑模协同制导律[J]. 航空学报, 2020, 41(S1): 723759. SI Y J, XIONG H, SONG X, et al. Three dimensional guidance law for cooperative operation based on adaptive terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723759(in Chinese).
[47] 杨芳, 张宽桥, 余磊. 自适应非奇异快速终端二阶滑模制导律[J]. 弹道学报, 2020, 32(2): 7-15. YANG F, ZHANG K Q, YU L. Adaptive nonsingular fast terminal second-order sliding mode guidance law[J]. Journal of Ballistics, 2020, 32(2): 7-15(in Chinese).
[48] 尤浩, 赵久奋, 李朋, 等. 带落角约束的非奇异快速终端二阶滑模制导律[J]. 弹箭与制导学报, 2019, 39(6): 155-159, 176. YOU H, ZHAO J F, LI P, et al. Nonsingular fast terminal second-order sliding mode guidance law with impact angle constraints[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(6): 155-159, 176(in Chinese).
[49] 李晓宝, 赵国荣, 刘帅, 等. 考虑攻击角度和视场角约束的自适应终端滑模制导律[J]. 控制与决策, 2020, 35(10): 2336-2344. LI X B, ZHAO G R, LIU S, et al. Adaptive terminal sliding mode guidance law with impact angle and field-of-view constraints[J]. Control and Decision, 2020, 35(10): 2336-2344(in Chinese).
[50] LYU S, ZHU Z H, TANG S, et al. Prescribed performance slide mode guidance law with terminal line-of-sight angle constraint against maneuvering targets[J]. Nonlinear Dynamics, 2017, 88(3): 2101-2110.
[51] 陈琦, 王中原, 常思江, 等. 不确定飞行环境下的滑翔制导炮弹方案弹道优化[J]. 航空学报, 2014, 35(9): 2593-2604. CHEN Q, WANG Z Y, CHANG S J, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2593-2604(in Chinese).
[52] 余跃, 王宏伦. 一种高超声速飞行器再入轨迹优化方法[J]. 宇航学报, 2020, 41(7): 926-936. YU Y, WANG H L. A reentry trajectory optimization method for hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(7): 926-936(in Chinese).
[53] 刘磊, 高文冀, 王建超. 基于高斯伪谱法的制导火箭弹协同末制导分析[J]. 导弹与航天运载技术, 2020(3): 81-85. LIU L, GAO W J, WANG J C. Cooperative terminal guidance analysis of guided rocket missle based on gauss pseudo-spectral method[J]. Missiles and Space Vehicles, 2020(3): 81-85(in Chinese).
[54] XIAO L, LV L, LIU P, et al. A novel adaptive Gauss pseudospectral method for nonlinear optimal control of constrained hypersonic re-entry vehicle problem[J]. International Journal of Adaptive Control and Signal Processing, 2018, 32(9): 1243-1258.
[55] 罗淑贞, 孙青林, 檀盼龙, 等. 基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J]. 航空学报, 2017, 38(3): 320363. LUO S Z, SUN Q L, TAN P L, et al. Trajectory planning of parafoil system with intricate constraints based on Gauss pseudo-spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 320363(in Chinese).
[56] 姜鹏, 郭栋, 韩亮, 等. 多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020, 41(S1): 723776. JIANG P, GUO D, HAN L, et al. Trajectory optimization for cooperative reentry of multiple hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723776(in Chinese).
[57] JEON I S, CHO H, LEE J I. Exact guidance solution for maneuvering target on relative virtual frame formulation[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(7): 1330-1340.
[58] YUAN P J, CHERN J S. Solutions of true proportional navigation for maneuvering and nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1): 268-271.
[59] GUELMAN M. Proportional navigation with a maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(3): 364-371.
[60] CHO H, RYOO C K, TAHK M J. Closed-form optimal guidance law for missiles of time-varying velocity[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1017-1022.
[61] KIM B, LEE J, HAN H, et al. Homing guidance with terminal angular constraint against nonmaneuvering and maneuvering targets[C]//Guidance, Navigation, and Control Conference. Reston: AIAA, 1997: 3474.
[62] SREEJA S, HABLANI H B. Precision munition guidance and moving-target estimation[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2100-2111.
[63] TALOLE S, PHADKE S. Nonlinear target state estimation in homing guidance[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002: 4772.
[64] VADDI S, MENON P, OHLMEYER E. Target state estimation for integrated guidance-control of missiles[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2007: 6838.
[65] KAIN J E, YOST D J. Target state estimation in an ECM environment[J]. Journal of Spacecraft and Rockets, 1975, 12(8): 492-498.
[66] HEPNER S, GEERING H. Target acceleration estimation in planar intercept scenarios[C]//Guidance, Navigation and Control Conference. Reston: AIAA, 1988: 4061.
[67] WANG X B, ZHANG H S, FU M Y. Collaborative target tracking in WSNs using the combination of maximum likelihood estimation and Kalman filtering[J]. Journal of Control Theory and Applications, 2013, 11(1): 27-34.
[68] JIANG X Y, LU B Z, REN P, et al. Augmented filtering based on information weighted consensus fusion for simultaneous localization and tracking via wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 11(9): 391757.
[69] LV W, GUO L P, XU W Q, et al. Vehicle detection in synthetic aperture radar images with feature fusion-based sparse representation[J]. Journal of Applied Remote Sensing, 2018, 12: 025020.
[70] 杨胜江, 温求遒, 周冠群, 等. 考虑捷联导引头最小视场角约束的制导策略[J]. 航空学报, 2020, 41(S2): 724449. YANG S J, WEN Q Q, ZHOU G Q, et al. Guidance strategy considering strapdown seeker minimum field-of-view angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724449(in Chinese).
Outlines

/