FPGAs have gained widespread application in the aerospace electronic system. Affected by the harsh radiation environment of the space, the important memory circuit BRAM in FPGAs is prone to bit flip failure due to the adoption of SRAM technology. Despite the large proportion of transient faults, permanent faults still exist. Since the current BRAM self-repairing methods address only transient faults, we study a self-repairing method that can simultaneously repair both transient and permanent faults. A cold backup multi-mode redundancy structure using three hot backup modules and one cold backup module to construct BRAM is proposed to repair transient faults through TMR-Scrubbing and permanent faults by cold-backup-replacement. The circuit structure and implementation method of each module in the entire BRAM self-repairing system have been presented, and the self-repairing ability of the system has been verified through experiments. The effectiveness of the method in terms of reliability, hardware resources and time consumption has been verified through comparative analysis.
ZHANG Zhai
,
LIU Yan
,
HUANG Lili
. Self-repairing method for BRAM based on cold backup multi-mode redundancy structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(7)
: 324676
-324676
.
DOI: 10.7527/S1000-6893.2020.24676
[1] 张亚娟. 高性能FPGA中的BRAM模块设计[D]. 深圳:深圳大学, 2015:13-18. ZHANG Y J. The design of BRAM module in the high performance FPGA[D]. Shenzhen:Shenzhen University, 2015:13-18(in Chinese).
[2] 刘瑛, 胡凯, 丛红艳, 等. 一种FPGA中BRAM36k的设计方法[J]. 电子与封装, 2014, 14(5):18-22. LIU Y, HU K, CONG H Y, et al. A design method of FPGA BRAM36k[J]. Electronics & Packaging, 2014, 14(5):18-22(in Chinese).
[3] 袁晓军, 张亮. XILINX FPGA内部BRAM资源的应用研究[J]. 航空计算技术, 2018, 48(5):122-125. YUAN X J, ZHANG L. Application research on BRAM in XILINX FPGA[J]. Aeronautical Computing Technique, 2018, 48(5):122-125(in Chinese).
[4] 伊同超. 适用于纳米级可编程逻辑器件的BRAM设计与研究[D]. 哈尔滨:哈尔滨工业大学, 2014:8-12. YI T C. Design and research of BRAM applied to nano-scale field programmable gate array[D]. Harbin:Harbin Institute of Technology, 2014:8-12(in Chinese).
[5] 许海滨. FPGA软错误防护方法研究[D]. 西安:西安电子科技大学, 2015:14-17. XU H B. A study of FPGA protection methods for alleviating the influence of soft errors[D]. Xi'an:Xidian University, 2015:14-17(in Chinese).
[6] GLEIN R, MENGS P, RITTNER F, et al. BRAM implementation of a single-event upset sensor for adaptive single-event effect mitigation in reconfigurable FPGAs[C]//2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Piscataway:IEEE Press, 2017:1-8.
[7] RITTNER F, GLEIN R, HEUBERGER A. Detection and Isolation of permanent faults in FPGAs with remote access[C]//2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig). Piscataway:IEEE Press, 2016:1-4.
[8] HONG C, BENKRID K, ITURBE X, et al. Design and implementation of fault-tolerant soft processors on FPGAs[C]//22nd International Conference on Field Programmable Logic and Applications (FPL). Piscataway:IEEE Press, 2012:683-686.
[9] LEONG C, SEMIÃO J, SANTOS M B, et al. Fast radiation monitoring in FPGA-based designs[C]//2015 Conference on Design of Circuits and Integrated Systems (DCIS). Piscataway:IEEE Press, 2015:1-6.
[10] BATISTA A J N, LEONG C, SANTOS B, et al. SEU mitigation exploratory tests in a ITER related FPGA[J]. Fusion Engineering and Design, 2017, 118:111-116.
[11] 丁朋程. 基于SRAM型FPGA的抗单粒子效应容错技术的研究[D]. 兰州:西北师范大学, 2013:43-52. DING P C. Research on fault-tolerance techniques against single event effects for SRAM-based FPGAs[D]. Lanzhou:Northwest Normal University, 2013:43-52(in Chinese).
[12] ROLLINS N, FULLER M, WIRTHLIN M J. A comparison of fault-tolerant memories in SRAM-based FPGAs[C]//2010 IEEE Aerospace Conference. Piscataway:IEEE Press, 2010:1-12.
[13] DE LIMA KASTENSMIDT F G, NEUBERGER G, HENTSCHKE R F, et al. Designing fault-tolerant techniques for SRAM-based FPGAs[J]. IEEE Design & Test of Computers, 2004, 21(6):552-562.
[14] MORGAN K S, MCMURTREY D L, PRATT B H, et al. A comparison of TMR with alternative fault-tolerant design techniques for FPGAs[J]. IEEE Transactions on Nuclear Science, 2007, 54(6):2065-2072.
[15] KELLER A M, WIRTHLIN M J. Benefits of complementary SEU mitigation for the LEON3 soft processor on SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2017, 64(1):519-528.
[16] 张砦, 王友仁. 基于可靠性优化的芯片自愈型硬件细胞阵列布局方法[J]. 航空学报, 2014, 35(12):3392-3402. ZHANG Z, WANG Y R. Method to reliability improvement of chip self-healing hardware by array layout reformation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3392-3402(in Chinese).
[17] 张砦, 王友仁. 应用设计过程的胚胎硬件细胞单元粒度优化方法[J]. 航空学报, 2016, 37(11):3502-3511. ZHANG Z, WANG Y R. Cell granularity optimization method of embryonics hardware in application design process[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3502-3511(in Chinese).
[18] 杨士元. 数字系统的故障诊断与可靠性设计[M]. 北京:清华大学出版社, 2000:257-260. YANG S Y. Fault diagnosis and reliability design of digital system[M]. Beijing:Tsinghua University Press, 2000:257-260(in Chinese).
[19] ZHANG Z, QIU Y, YUAN X L, et al. A self-healing strategy with fault-cell reutilization of bio-inspired hardware[J]. Chinese Journal of Aeronautics, 2019, 32(7):1673-1683.
[20] 孙兆伟, 刘源, 徐国栋, 等. 基于FPGA内置RAM的抗辐射有限状态机设计[J]. 航空学报, 2010, 31(5):989-995. SUN Z W, LIU Y, XU G D, et al. Design of finite-state-machine for space application based on FPGA inner RAM[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):989-995(in Chinese).
[21] NIDHIN T S, BHATTACHARYYA A, BEHERA R P, et al. Dependable system design with soft error mitigation techniques in SRAM based FPGAs[C]//2017 Innovations in Power and Advanced Computing Technologies (i-PACT). Piscataway:IEEE Press, 2017:1-6.
[22] 伊小素, 邓燕, 潘雄, 等. BRAM存储器EDAC容错技术可靠性分析[J]. 航天控制, 2011, 29(5):67-71. YI X S, DENG Y, PAN X, et al. The BRAM reliability analysis with EDAC fault-tolerant technology[J]. Aerospace Control, 2011, 29(5):67-71(in Chinese).