Fluid Mechanics and Flight Mechanics

State-space representation of aerodynamica of flying wing with low aspect ratio at high angles of attack

  • WANG Yanling ,
  • BU Chen ,
  • YANG Wen ,
  • SHEN Yanjie ,
  • FENG Shuai
Expand
  • 1. AVIC Aerodynamics Research Institute, Harbin 150001, China;
    2. Aerodynamics for Low Speed and High Reynolds Number, Harbin 150001, China

Received date: 2020-07-16

  Revised date: 2020-10-10

  Online published: 2020-10-30

Abstract

The performance of modern military aircraft in areas of high angles of attack has an important influence on the establishment of air combat advantage. The establishment of suitable mathematical models for the high angle of attack area plays an important role in flight simulation, stability analysis and control law design. The state space model is modified to address the hysteresis characteristic of the low aspect ratio flying wing model. The unsteady aerodynamic model is established using the large-amplitude forced oscillation test data. The results show that the state space model developed and improved in this paper can accurately predict the unsteady aerodynamic characteristics of aircraft under different maneuvers and has high engineering practicability.

Cite this article

WANG Yanling , BU Chen , YANG Wen , SHEN Yanjie , FENG Shuai . State-space representation of aerodynamica of flying wing with low aspect ratio at high angles of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 124539 -124539 . DOI: 10.7527/S1000-6893.2020.24539

References

[1] ABZUG M J, LARRABEE E E. Tactical airplane maneuverability[M]//Airplane Stability and Control, Second Edition. Cambridge:Cambridge University Press,1997:146-161.
[2] SCHIFFL T M. On the formulation of the aerodynamic characteristic in aircraft dynamics:NASA TRR-456[R].Washington, D. C.:NASA,1976.
[3] GHOREYSHI M, JIRASEK A, CUMMINGS R, et al. A computional investigation into the use of response functions for aerodynamic loads modeling[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[4] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5):1109-1115.
[5] FAN Y. Identification of unsteady aerodynamic modeling at high angle of attack:AIAA-1996-3407-CP[R].Reston:AIAA,1996.
[6] 杨文, 尚祖铭, 卜忱. 一种基于升力面分解思想的横向状态空间模型[J]. 飞行力学, 2014, 32(5):464-467,476. YANG W, SHANG Z M, BU C. A lateral state-space model based on the idea of splitting the aircraft into several lifting surfaces or panels[J]. Flight Dynamics, 2014, 32(5):464-467,476(in Chinese).
[7] ABRAMOV N, GOMAN M, KHRABROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2004.
[8] ABRAMOV M B,GOMAN M G, KHRABROV A N, et al. Simple wings unsteady aerodynamic at high angle of attack:Experimental and modeling results:AIAA-1999-4013[R].Reston:AIAA,1999.
[9] 龚正, 沈宏良. 非定常气动力非线性微分方程建模方法[J]. 航空学报, 2011, 32(1):83-90. GONG Z, SHEN H L. Unsteady aerodynamic modeling method using nonlinear differential equations[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):83-90(in Chinese).
[10] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1):14-23.
[11] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of lateral-directional unsteady aerodynamics[C]//24th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1999.
[12] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//23rd Atmospheric Flight Mechanics Conference. Reston:AIAA, 1998.
[13] VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995:161-206.
[14] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
[15] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
[16] BRANDON J, FOSTER J, SHAH G, et al. Comparison of rolling moment characteristics during roll oscillations for a low and a high aspect ratio configuration[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2004.
[17] 苏继川, 黄勇, 李永红, 等. 小展弦比飞翼亚、跨、超声速支撑干扰研究[J]. 空气动力学学报, 2015, 33(3):289-295. SU J C, HUANG Y, LI Y H, et al. Support interference of low-aspect-ratio flying-wing from subsonic to supersonic speed[J]. Acta Aerodynamica Sinica, 2015, 33(3):289-295(in Chinese).
[18] 岑飞,李清,刘志涛,等. 民机极限飞行状态的动态气动力试验与建模[J].航空学报,2020,41(8):123664. CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil transport configuration at extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica,2020,41(8):123664(in Chinese).
[19] 杨文, 卜忱, 眭建军, 等. 面向复杂构型飞机的非定常气动力建模与辨识[J]. 航空学报, 2016, 37(8):2464-2471. YANG W, BU C, SUI J J, et al. Unsteady aerodynamic modeling and identification for a complicated aircraft configurations[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2464-2471(in Chinese).
[20] 高正红, 焦天峰. 飞行器快速俯仰产生大迎角非定常气动力数学模型研究[J]. 西北工业大学学报, 2001, 19(4):506-510. GAO Z H, JIAO T F. On an unsteady aerodynamics model for pitching-oscillating body at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2001, 19(4):506-510(in Chinese).
Outlines

/