[1] NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. SSH:Single stage headless face detector[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:4885-4894.
[2] ZHANG L L, LIN L, LIANG X D, et al. Is faster R-CNN doing well for pedestrian detection?[C]//Computer Vision-ECCV 2016, 2016.
[3] CHEN Q, TANG S H, YANG Q, et al. Cooper:Cooperative perception for connected autonomous vehicles based on 3D point clouds[C]//2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). Piscataway:IEEE Press, 2019:514-524.
[4] WANG Z Y, FU H, WANG L, et al. SCNet:Subdivision coding network for object detection based on 3D point cloud[J]. IEEE Access, 2019, 7:120449-120462.
[5] RAGHUNANDAN A, MOHANA, RAGHAV P, et al. Object detection algorithms for video surveillance applications[C]//2018 International Conference on Communication and Signal Processing (ICCSP). Piscataway:IEEE Press, 2018:0563-0568.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014:580-587.
[7] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2015:1440-1448.
[8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:21-37.
[10] REDMON J, FARHADI A. YOLO9000:Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:6517-6525.
[11] REDMON J, FARHADI A. YOLOv3:An incremental improvement[DB/OL]. arXiv preprint:1804.02767, 2018.
[12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:770-778.
[13] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:2261-2269.
[14] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:936-944.
[15] FU C Y, LIU W, RANGA A, et al. DSSD:Deconvolutional single shot detector[DB/OL]. arXiv preprint:1701.06659, 2017
[16] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net:Detecting objects in context with skip pooling and recurrent neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:2874-2883.
[17] CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[M]//Computer Vision-ACCV 2016. Cham:Springer International Publishing, 2017:214-230.
[18] CAI Z W, FAN Q F, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Computer Vision-ECCV 2016, 2016.
[19] KRISHNA H, JAWAHAR C V. Improving small object detection[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). Piscataway:IEEE Press, 2017:340-345.
[20] WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:2960-2969.
[21] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:3578-3587.
[22] HU X W, XU X M, XIAO Y J, et al. SINet:A scale-insensitive convolutional neural network for fast vehicle detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3):1010-1019.
[23] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:2980-2988.
[24] KONG T, YAO A B, CHEN Y R, et al. HyperNet:towards accurate region proposal generation and joint object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:845-853.
[25] GHODRATI A, DIBA A, PEDERSOLI M, et al. DeepProposal:Hunting objects by cascading deep convolutional layers[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2015:2578-2586.
[26] CAI Z W, VASCONCELOS N. Cascade R-CNN:Delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:6154-6162.
[27] CUI L S, MA R, LV P, et al. MDSSD:Multi-scale deconvolutional single shot detector for small objects[J]. Science China Information Sciences, 2020, 63(2):1-3.
[28] CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD:Fast detection for small objects[C]//International Conference on Graphic and Image Processing (ICGIP),2017.
[29] LI Z, ZHOU F. FSSD:Feature fusion single shot Multibox detector[DB/OL]. arXiv preprint:1712.00960, 2018.
[30] LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:1951-1959.
[31] BAI Y C, ZHANG Y Q, DING M L, et al. SOD-MTGAN:Small object detection via multi-task generative adversarial network[C]//Computer Vision-ECCV 2018, 2018.
[32] NOH J, BAE W, LEE W, et al. Better to follow, follow to be better:Towards precise supervision of feature super-resolution for small object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019:9724-9733.
[33] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[C]//9th International Conference on Advances in Computing and Information Technology (ACITY 2019), 2019.
[34] CHEN C R, ZHANG Y, LV Q, et al. RRNet:A hybrid detector for object detection in drone-captured images[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway:IEEE Press, 2019:100-108.
[35] CHEN Y, ZHANG P, LI Z, et al. Stitcher:Feedback-driven data provider for object detection[DB/OL]. arXiv preprint:004.12432, 2020.
[36] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint:2004.10934, 2020
[37] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3):590-601. LIU Y, LIU H Y, FAN J L, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3):590-601(in Chinese).
[38] TONG K, WU Y Q, ZHOU F. Recent advances in small object detection based on deep learning:A review[J]. Image and Vision Computing, 2020, 97:103910.
[39] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:2999-3007.
[40] SINGH B, NAJIBI M, DAVIS L. SNIPER:Efficient multi-scale training[DB/OL]. arXiv preprint:1805.09300, 2018.
[41] LI Z M, PENG C, YU G, et al. DetNet:Design backbone for object detection[M]//Computer Vision-ECCV 2018. Cham:Springer International Publishing, 2018:339-354.
[42] KIM Y, KANG B N, KIM D. SAN:Learning relationship between convolutional features for multi-scale object detection[M]//Computer Vision-ECCV 2018. Cham:Springer International Publishing, 2018:328-343.
[43] GIDARIS S, KOMODAKIS N. Object detection via a multi-region and semantic segmentation-aware CNN model[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2015:1134-1142.
[44] ZHU Y S, ZHAO C Y, WANG J Q, et al. CoupleNet:Coupling global structure with local parts for object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:4146-4154.
[45] GUAN L T, WU Y, ZHAO J Q. SCAN:Semantic context aware network for accurate small object detection[J]. International Journal of Computational Intelligence Systems, 2018, 11(1):936.
[46] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway:IEEE Press, 2020:1246-1254.
[47] ZHU R, ZHANG S F, WANG X B, et al. ScratchDet:Training single-shot object detectors from scratch[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:2263-2272.
[48] LU Y X, JAVIDI T, LAZEBNIK S. Adaptive object detection using adjacency and zoom prediction[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:2351-2359.
[49] BELLVER M, NIETO X G, ACOSTA F M, et al. Hierarchical object detection with deep reinforcement learning[C]//Neural Information Processing Systems, 2016:137-163.
[50] GAO M F, YU R C, LI A, et al. Dynamic zoom-in network for fast object detection in large images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:6926-6935.
[51] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:Common objects in context[M]//Computer Vision-ECCV 2014. Cham:Springer International Publishing, 2014:740-755.
[52] WOO S, HWANG S, KWEON I S. StairNet:Top-down semantic aggregation for accurate one shot detection[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway:IEEE Press, 2018:1093-1102.
[53] ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:4203-4212.
[54] ZHAO Q J, SHENG T, WANG Y T, et al. M2Det:A single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019:9259-9266.
[55] LI H C, XIONG P F, AN J, et al. Pyramid attention network for semantic segmentation[DB/OL]. arXiv preprint:1805.10180V1, 2018.
[56] SHRIVASTAVA A, SUKTHANKAR R, MALIK J, et al. Beyond skip connections:Top-down modulation for object detection[DB/OL]. arXiv preprint:1612.06851, 2016.
[57] LI J, WANG Y B, WANG C G, et al. DSFD:Dual shot face detector[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:5055-5064.
[58] LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019:6053-6062.
[59] ZHANG Y J, SHEN T. Small object detection with multiple receptive fields[J]. IOP Conference Series:Earth and Environmental Science, 2020, 440:032093.
[60] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
[61] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Neural Information Processing Systems, 2015:2017-2025.
[62] WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham:Springer International Publishing, 2018:3-19.
[63] ZHU Y S, ZHAO C Y, GUO H Y, et al. Attention CoupleNet:Fully convolutional attention coupling network for object detection[J]. IEEE Transactions on Image Processing, 2019, 28(1):113-126.
[64] LI W, LI H L, WU Q B, et al. Simultaneously detecting and counting dense vehicles from drone images[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9651-9662.
[65] 李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8):1400-1408. LI H Y, LI C G, AN J B, et al. Attention mechanism improves CNN remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8):1400-1408(in Chinese).
[66] YING X, WANG Q, LI X W, et al. Multi-attention object detection model in remote sensing images based on multi-scale[J]. IEEE Access, 2019, 7:94508-94519.
[67] ZHANG S F, ZHU X Y, LEI Z, et al. S3FD:Single shot scale-invariant face detector[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:192-201.
[68] LAW H, DENG J. CornerNet:Detecting objects as paired keypoints[C]//Computer Vision-ECCV 2018, 2018.
[69] ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:850-859.
[70] ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[DB/OL]. arXiv preprint:1904.07850, 2019
[71] WANG C, SHI J, YANG X Q, et al. Geospatial object detection via deconvolutional region proposal network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8):3014-3027.
[72] LI Y Y, PEI X, HUANG Q, et al. Anchor-free single stage detector in remote sensing images based on multiscale dense path aggregation feature pyramid network[J]. IEEE Access, 2020, 8:63121-63133.
[73] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]//Computer Vision-ECCV 2018, 2018.
[74] YU J H, JIANG Y N, WANG Z Y, et al. UnitBox:An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York:ACM, 2016:516-520.
[75] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:658-666.
[76] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss:Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020:12993-13000.
[77] XIA G S, BAI X, DING J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:3974-3983.
[78] CHENG G, HAN J W, ZHOU P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98:119-132.
[79] ZHU H G, CHEN X G, DAI W Q, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//2015 IEEE International Conference on Image Processing (ICIP). Piscataway:IEEE Press, 2015:3735-3739.
[80] RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery:A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34:187-203.
[81] JAIN V, LEARNED-MILLER E. Fddb:A benchmark for face detection in unconstrained settings[R]. Boston:University of Massachusetts, 2010
[82] YANG S, LUO P, LOY C C, et al. WIDER FACE:A face detection benchmark[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:5525-5533.
[83] YANG B, YAN J J, LEI Z, et al. Fine-grained evaluation on face detection in the wild[C]//2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Piscataway:IEEE Press, 2015:1-7.
[84] KEMELMACHER-SHLIZERMAN I, SEITZ S M, MILLER D, et al. The MegaFace benchmark:1 million faces for recognition at scale[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:4873-4882.
[85] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection:An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):743-761.
[86] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE Press, 2017:3226-3229.
[87] ZHANG S S, BENENSON R, SCHIELE B. CityPersons:A diverse dataset for pedestrian detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:4457-4465.
[88] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:3213-3223.
[89] ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:2110-2118.
[90] ZHANG J M, HUANG M T, JIN X K, et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J]. Algorithms, 2017, 10(4):127.
[91] BEHRENDT K, NOVAK L, BOTROS R. A deep learning approach to traffic lights:Detection, tracking, and classification[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2017:1370-1377.
[92] LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498.
[93] PANG J M, LI C, SHI J P, et al. R2-CNN:Fast tiny object detection in large-scale remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5512-5524.
[94] HU P, RAMANAN D. Find tiny face[DB/OL]. arXiv preprint:1612.04402, 2016.
[95] TANG X, DU D K, HE Z Q, et al. PyramidBox:A context-assisted single shot face detector[C]//Computer Vision-ECCV 2018, 2018.
[96] MAO J Y, XIAO T T, JIANG Y N, et al. What can help pedestrian detection?[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:6034-6043.
[97] LIU W, LIAO S C, HU W D, et al. Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]//Computer Vision-ECCV 2018, 2018.
[98] CHENG P, LIU W, ZHANG Y F, et al. LOCO:Local context based faster R-CNN for small traffic sign detection[C]//MultiMedia Modeling, 2018.
[99] LU Y F, LU J M, ZHANG S H, et al. Traffic signal detection and classification in street views using an attention model[J]. Computational Visual Media, 2018, 4(3):253-266.