Fluid Mechanics and Flight Mechanics

Numerical investigation of nozzle flow separation control using plasma actuation

  • LI Chengcheng ,
  • LI Fang ,
  • YANG Bin ,
  • WANG Ying
Expand
  • 1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200039, China;
    2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200039, China;
    3. Beijing Aerospace System Engineering Research Institute, Beijing 100076, China

Received date: 2020-07-17

  Revised date: 2020-08-04

  Online published: 2020-10-23

Supported by

Natural Science Foundation of Shanghai (21ZR1462000); Shanghai Rising-star Pragram(19QC1400200)

Abstract

To study the control effect of the plasma actuator on nozzle separated flow, we use a phenomenological model simulating the effect of plasma excitation to numerically study the suppression effect of dielectric barrier discharge plasma and arc discharge plasma on the nozzle separated flow. The effect of different discharge thermal power densities and discharge positions of arc discharge plasma on the suppression effect is further explored. The results show that the arc discharge plasma has a better effect on suppression of nozzle separated flow. When the arc discharge plasma actuator acts on the upstream of the interaction zone of the shock wave and boundary layer, the suppression effect on the flow separation is the best; when the thermal power density of the arc discharge is small, the generated inducing jet velocity is too small to easily influence the flow field of the separation zone; when the thermal power density of the arc discharge is 8×1010 W/m3, the separation reflux area of the nozzle completely disappears.

Cite this article

LI Chengcheng , LI Fang , YANG Bin , WANG Ying . Numerical investigation of nozzle flow separation control using plasma actuation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 124547 -124547 . DOI: 10.7527/S1000-6893.2020.24547

References

[1] BIANCHI D, NERI A. Numerical simulation of chemical erosion in VEGA launcher solid-propellant rocket motor nozzles:AIAA-2015-4175[R]. Reston:AIAA, 2015.
[2] 杨飞, 李振海, 李建昌. 固体火箭发动机喷管型面的研究进展[J]. 真空, 2020, 57(1):40-47. YANG F, LI Z H, LI J C. Latest studies on solid rocket engine nozzle profile[J]. Vacuum, 2020, 57(1):40-47(in Chinese).
[3] 王艺杰, 鲍福廷, 杜佳佳. 固体火箭发动机喷管分离流动数值模拟及试验研究[J]. 固体火箭技术, 2010, 33(4):406-408. WANG Y J, BAO F T, DU J J. Numerical simulation and experiment of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology, 2010, 33(4):406-408(in Chinese).
[4] XIAO Q, TSAI H M, PAPAMOSCHOU D. Numerical investigation of supersonic nozzle flow separation[J]. AIAA Journal, 2007, 45(3):532-541.
[5] 李波, 王一白, 杨立军, 等. 尾部二次喷流抑制喷管分离流动的数值研究[J]. 航空动力学报, 2013, 28(11):2615-2620. LI B, WANG Y B, YANG L J, et al. Numerical investigation of nozzle flow separation control by injecting secondary jet from nozzle exit[J]. Journal of Aerospace Power, 2013, 28(11):2615-2620(in Chinese).
[6] 马宏瑞, 张扬军, 郑孟伟, 等. 双钟型喷管高度补偿特性的数值分析[J]. 推进技术, 2003, 24(6):505-508. MA H R, ZHANG Y J, ZHENG M W, et al. Numerical analysis on the performance of dual-bell nozzle[J]. Journal of Propulsion Technology, 2003, 24(6):505-508(in Chinese).
[7] STARK R, GéNIN C, SCHNEIDER D, et al. Ariane 5 performance optimization using dual-bell nozzle extension[J]. Journal of Spacecraft and Rockets, 2016, 53(4):743-750.
[8] SATO M, MORIYA S I, TADANO M, et al. Experimental study on transitional phenomena of extendible nozzle:AIAA-2007-5471[R]. Reston:AIAA, 2007.
[9] BOCCALETTO L. Solving the flow separation issue:A new nozzle concept:AIAA-2008-5234[R]. Reston:AIAA, 2008.
[10] 王艺杰. 固体火箭发动机喷管分离流动数值模拟及试验研究[D]. 西安:西北工业大学, 2010:1-5. WANG Y J. Numerical simulation and experiment of flow separation in SRM nozzles[D]. Xi'an:Northwestern Polytechnical University, 2010:1-5(in Chinese).
[11] BOCCALETTO L, REIJASSE P, DUSSAUGE J P. Influence of film cooling injection on transient side loads:AIAA-2007-5474[R]. Reston:AIAA, 2007.
[12] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[13] 梁斐杰, 陆利蓬, 柳阳威, 等. 等离子体激励位置对抑制压气机角区分离效果的影响[J]. 航空发动机, 2013, 39(4):32-37,50. LIANG F J, LU L P, LIU Y W, et al. Impact of plasma actuating position on control of corner separation of a compressor cascade[J]. Aeroengine, 2013, 39(4):32-37,50(in Chinese).
[14] WEST T, HOSDER S. Numerical investigation of plasma actuator configurations for flow separation control at multiple angles of attack:AIAA-2012-3053[R]. Reston:AIAA, 2012.
[15] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5):055107.
[16] 严红, 王松. 热激励在超声速进气道内对激波诱导的边界层分离的控制机理[J]. 空气动力学学报, 2014, 32(6):806-813. YAN H, WANG S. Control of shock/boundary layer interaction in supersonic inlet using thermal excitation[J]. Acta Aerodynamica Sinica, 2014, 32(6):806-813(in Chinese).
[17] 王宇天, 张百灵, 李益文, 等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2):364-371. WANG Y T, ZHANG B L, LI Y W, et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2):364-371(in Chinese).
[18] 盛佳明,张海灯,吴云,等. 电弧放电等离子体激励控制超声速压气机叶栅激波/边界层干扰仿真研究[J].推进技术, 2020, 41(10):2228-2236. SHENG J M, ZHANG H D, WU Y, et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2020, 41(10):2228-2236(in Chinese).
[19] 高婉宁,张悦,谭慧俊,等.超声速条件下等离子体合成射流对鼓包诱导流场的影响[J]. 推进技术, 2021, 42(3):532-539. GAO W N, ZHANG Y, TAN H J, et al. Effects of plas-ma synthetic jet on bump-induced flow field under su-personic condition[J]. Journal of Propulsion Technology, 2021, 42(3):532-539(in Chinese).
[20] HUNTER C. Experimental, theoretical, and computational investigation of separated nozzle flows:AIAA-1998-3107[R]. Reston:AIAA, 1998.
[21] NAIR P P, SURYAN A, KIM H D. Computational study on reducing flow asymmetry in over-expanded planar nozzle by incorporating double divergence[J]. Aerospace Science and Technology, 2020, 100:105790.
[22] SHYY W, JAYARAMAN B, ANDERSSON A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11):6434-6443.
[23] SUN Q, LI Y H, CHENG B Q, et al. The characteristics of surface arc plasma and its control effect on supersonic flow[J]. Physics Letters A, 2014, 378(36):2672-2682.
[24] 王浩, 程邦勤, 纪振伟, 等. 局部电弧丝状放电控制激波/边界层干扰的数值研究[J]. 推进技术, 2017, 38(11):2431-2438. WANG H, CHENG B Q, JI Z W, et al. Numerical simulation of localized arc filament plasma actuator for shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2017, 38(11):2431-2438(in Chinese).
[25] 王亚骏, 吉洪湖, 陈宝延, 等. 轴对称分开排气喷管改混合排气喷管设计方法[J]. 航空动力学报, 2017, 32(7):1648-1657. WANG Y J, JI H H, CHEN B Y, et al. Modified verison design method of axisymmetric unmixed-flow nozzle to mixed-flow nozzle[J]. Journal of Aerospace Power, 2017, 32(7):1648-1657(in Chinese).
Outlines

/