Electronics and Electrical Engineering and Control

Error model-aided autofocus for airborne high resolution wide swath DBF-SAR

  • BAO Yue ,
  • CHEN Junyu ,
  • SHI Tianyue ,
  • MAO Xinhua
Expand
  • 1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-07-06

  Revised date: 2020-07-20

  Online published: 2020-10-23

Supported by

National Natural Science Foundation of China(62071225,61671240);Natural Science Foundation of Jiangsu Province(BK20170091);National Defense Science and Technology Key Laboratory Fund(6142503180201)

Abstract

The High-Resolution Wide-Swath (HRWS) Digital Beam Forming (DBF) Synthetic Aperture Radar (SAR) operates with multi-channel spatial sampling instead of partial time-domain sampling, effectively easing the contradiction between high resolution and wide swath of SAR images, exhibiting important military and civilian values. Conventional DBF-SAR imaging methods assume that the relative position of the radar sensor is accurately known. However, phase errors caused by inaccurate sensor positions will seriously affect the high-resolution imaging capability of the DBF-SAR. Based on the Polar Format Algorithm (PFA), the analytical model of the residual azimuth phase error after DBF-SAR imaging processing is derived, and the effect of the error on the imaging quality is analyzed. An autofocusing algorithm based on image contrast optimization is proposed with the deduced analytical structure model of a priori phase errors. This method reduces the spatial dimension of the parameters to be estimated, improving the parameter estimation accuracy and calculation efficiency of the autofocus algorithm by introducing a priori analytical structure information. Simulation data processing results verify the correctness of theoretical analysis and the effectiveness of the proposed method.

Cite this article

BAO Yue , CHEN Junyu , SHI Tianyue , MAO Xinhua . Error model-aided autofocus for airborne high resolution wide swath DBF-SAR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 324502 -324502 . DOI: 10.7527/S1000-6893.2020.24502

References

[1] 房超, 刘艳阳, 李真芳, 等. 方位多通道HRWS SAR多普勒中心稳健估计算法[J]. 西安电子科技大学学报, 2018, 45(1):30-34,116. FANG C, LIU Y Y, LI Z F, et al. Robust Doppler centroid estimation method for multichannel HRWS SAR[J]. Journal of Xidian University, 2018, 45(1):30-34,116(in Chinese).
[2] YANG X Y, LI G, SUN J P, et al. High-resolution and wide-swath SAR imaging via Poisson disk sampling and iterative shrinkage thresholding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4692-4704.
[3] KRIEGER G, YOUNIS M, GEBERT N, et al. Advanced concepts for high-resolution wide-swath SAR imaging[C]//8th European conference on Synthetic Aperture Radar, 2010:7-10.
[4] MEN Z R, WANG P B, LI C S. Modified imaging method for high resolution wide swath spaceborne SAR based on nonuniform azimuth sampling[C]//2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway:IEEE Press, 2015:447-449.
[5] HUANG P H, XIA X G, LIU X Z, et al. A novel baseline estimation method for multichannel HRSW SAR system[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12):1829-1833.
[6] LIU B C, HE Y J. Improved DBF algorithm for multichannel high-resolution wide-swath SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1209-1225.
[7] 卢景月, 张磊, 孟智超,等. 曲线轨迹下前视多通道SAR解模糊成像算法[J]. 航空学报, 2019, 40(7):322745. LU J Y, ZHANG L, MENG Z C, et al. Unambiguous imaging for forward-looking synthetic aperture radar on curve trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322745(in Chinese).
[8] WANG Z B, LIU Y Y, LI Z F, et al. Phase bias estimation for multi-channel HRWS SAR based on Doppler spectrum optimization[J]. Electronic Letter, 2016, 52(21):1805-1807.
[9] 郜参观, 邓云凯, 冯锦, 等. 非均匀采样对偏置相位中心多波束SAR性能影响的分析[J]. 电子与信息学报, 2012, 34(6):1305-1310. GAO C G, DENG Y K, FENG J, et al. Analysis on the non-uniform sampling of displaced phase center multiple-beam SAR systems[J]. Journal of Electronics & Information Technology, 2012, 34(6):1305-1310(in Chinese).
[10] BAO Y, SHI T Y, LI D Q, et al. Modified polar format algorithm for high-resolution wide-swath DBF-SAR[C]//2019 IEEE 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway:IEEE Press, 2019:1-5.
[11] 范强, 吕晓德, 张平, 等. 星载SAR DPCMAB技术的方位向非均匀采样研究[J]. 电子与信息学报, 2006, 28(1):31-35. FAN Q, LV X D, ZHANG P, et al. Study of nonuniform azimuth sampling of DPCMAB technique in spaceborne SAR[J]. Journal of Electronics & Information Technology, 2006, 28(1):31-35(in Chinese).
[12] KRIEGER G, GEBERT N, MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience Remote Sensing Letters, 2004, 1(4):260-264.
[13] CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transaction on Geoscience Remote Sensing, 2014, 52(8):5034-5055.
[14] KIM J H, YOUNIS M, PRATS-IRAOLA P, et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):579-590.
[15] JIN T T, QIU X L, HU D H, et al. Unambiguous imaging of static scenes and moving targets with the first Chinese dual-channel spaceborne SAR sensor[J]. Sensors, 2017, 17(8):1709.
[16] 刘艳阳,李真芳,杨桃丽,等. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法[J]. 电子与信息学报, 2012, 34(12):2913-2919. LIU Y Y, LI Z F, YANG T L, et al. A novel channel phase bias estimation method for spaceborne along-track multi-channel HRWS SAR in time-domain[J]. Journal of Electronics & Information Technology, 2012, 34(12):2913-2919(in Chinese).
[17] WANG W, AN D X, LUO Y X, et al. A modified map-drift algorithm for SAR autofocusing[C]//2018 Asia-Pacific Microwave Conference (APMC), 2018:815-817.
[18] EVERS A, JACKSON J A. A generalized phase gradient autofocus algorithm[J]. IEEE Transactions on Computational Imaging, 2019,5(4):606-619.
[19] MORRISON R L, DO M N, MUNSON D C. SAR image autofocus by sharpness optimization:A theoretical study[J]. IEEE Transactions on Image Processing, 2007, 16(9):2309-2321.
[20] BERIZZI F, MARTORELLA M, CACCIAMANO A, et al. A contrast-based algorithm for synthetic range-profile motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10):3053-3062.
[21] MARC J, SCHEIBER R, REIGBER A. Robust, model-based external calibration of multi-channel airborne SAR sensors using range compressed raw data[J]. Remote Sensing, 2019, 11(22):2674.
[22] MAO X H, ZHU D Y. Two-dimensional autofocus for spotlight SAR polar format imagery[J]. IEEE Transactions on Computational Imaging, 2016, 2(4):524-539.
[23] MAO X H, ZHU D Y, ZHU Z D. Autofocus correction of APE and residual RCM in spotlight SAR polar format imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2693-2706.
[24] ZHU D Y, MAO X H, LI Y. Far-field limit of PFA for SAR moving target imaging[J]. IEEE Transaction on Aerospace and Electronic Systems, 2010, 46(2):917-929.
[25] MAO X H, DING L, ZHANG Y D, et al. Knowledge-aided 2-D autofocus for spotlight SAR filtered backprojection imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9041-9058.
[26] MAO X H, HE X L, LI D Q. Knowledge-aided 2-D autofocus for spotlight SAR range migration algorithm imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5458-5470.
Outlines

/