Solid Mechanics and Vehicle Conceptual Design

Dynamic response and failure of typical fuselage structure under blast impact load

  • LIU Zongxing ,
  • LIU Jun ,
  • LI Weina
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Haishan Industrial Development Corporation, Shijiazhuang 050200, China;
    3. COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2020-05-20

  Revised date: 2020-07-11

  Online published: 2020-10-23

Abstract

The dynamic response and failure mode of the fuselage structure under explosive impact loads must be studied to determine the location of the minimum risk bomb that satisfies the airworthiness requirements. Taking the typical fuselage structure of a certain type of aircraft as the research object, this study uses the LS-DYNA commercial software to establish the numerical model of the dynamic response of the typical fuselage structure under explosive impact loads. The control variable method is adopted to analyze the effects of the explosive equivalent, explosive impact distance and explosive impact location on the dynamic response and failure mode of typical fuselage structures. Meanwhile, the residual strength of typical fuselage structures after damage is studied. Results show that the critical equivalent of explosives causing effective damage to the fuselage structure is closely related to the blast impact distance; the blast impact distance has little effect on the damage and residual strength of typical fuselage structures; the position of steel bars of typical fuselage structures has considerable influence on the residual strength. On this basis, the dimensionless coefficients representing the residual strength are proposed, and the functional relationship between the dimensionless coefficients of the residual strength, and the explosive equivalent and explosion impact distance is established.

Cite this article

LIU Zongxing , LIU Jun , LI Weina . Dynamic response and failure of typical fuselage structure under blast impact load[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 224252 -224252 . DOI: 10.7527/S1000-6893.2020.24252

References

[1] FAA. Security considerations requirements for transport gategory airplanes FAR Part 25 Amendment:25-127[S]. Washington, D.C.:Federal Aviation Administration, 1965.
[2] FAA. Least risk bomb location:FAA AC25.795-6[S]. Washington, D.C.:Federal Aviation Administration, 1993.
[3] BOX P O. Boeing 727-100 safe bomb location study:FAA-RD-72-94[R]. Washington, D.C.:Federal Aviation Admin-istration, 1972.
[4] AVERY J, CHANG B, WHITE R. Boeing 747-100 safe bomb location study:FAA-RD-74-201[R]. Washington, D.C.:Federal Aviation Administration, 1974.
[5] DARLING R E. DC-9 safe bomb location study:FAA-RD-72-88[R]. Washington, D.C.:Federal Aviation Administration, 1973.
[6] HIMMEL E J. Lockheed L-1011 safe bomb location study:FAA-RD-74-202[R]. Washington, D.C.:Federal Aviation Administration, 1974.
[7] 冯振宇, 周书婷, 李恒晖, 等. 运输类飞机"最小风险炸弹位置"的研究进展[J]. 航空工程进展, 2018, 9(3):316-324. FENG Z Y, ZHOU S T, LI H H, et al. Research progress on the "least risk bomb location" (LRBL) for transport aircraft[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3):316-324(in Chinese).
[8] 陆鹏, 郭中宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究[J]. 民用飞机设计与研究, 2016(4):6-12. LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil air-craft least risk bomb location design[J]. Civil Aircraft Design & Research, 2016(4):6-12(in Chinese).
[9] MA L, HU Y, ZHENG J Y, et al. Failure analysis for cylindrical explosion containment vessels[J]. Engineering Failure Analysis, 2010, 17(5):1221-1229.
[10] RUSHTON N, SCHLEYER G K, CLAYTON A M, et al. Internal explosive loading of steel pipes[J]. Thin-Walled Structures, 2008, 46(7-9):870-877.
[11] CLUBLEY S K. Nonlinear long duration blast loading of cylindrical shell structures[J]. Engineering Structures, 2014, 59:113-126.
[12] LANGDON G S, OZINSKY A, CHUNG K Y S. The response of partially confined right circular stainless steel cylinders to internal air blast loading[J]. International Journal of Impact Engineering, 2014, 73:1-14.
[13] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究[J]. 兵工学报, 2018, 39(8):1582-1589. ZHENG C, KONG X S, ZHOU H, et al. On the deformation of thin plates subjected to confined blast load-ing[J]. Acta Armamentarii, 2018, 39(8):1582-1589(in Chinese).
[14] 罗兴柏, 张玉令, 丁玉奎. 爆炸及其防护简明教程[M]. 北京:国防工业出版社, 2016:38-40. LUO X B, ZHANG Y L, DING Y K, et al. A brief tutorial on explosion and its protection[M]. Beijing:National Defense Industry Press, 2016:38-40(in Chinese).
[15] HENRYCH J, MAJOR R. The dynamics of explosion and its use[M]. New York:Elsevier Scientific Publishing Company, 1979.
[16] BRODE H L. Blast wave from a spherical charge[J]. The Physics of Fluids, 1959, 2(2):217-229.
[17] 罗兴柏, 张玉令. 爆炸力学理论教程[M]. 北京:国防工业出版社, 2016:330-360. LUO X B, ZHANG Y L. Explosion theory course[M]. Beijing:National Defense Industry Press, 2016:330-360(in Chinese).
[18] 郑金国, 周书婷, 解江, 等. 爆炸载荷作用下2024-T3铝合金板动态响应试验研究[J]. 装备制造计算, 2017(2):127-130. ZHENG J G, ZHOU S T, XIE J, et al. Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load[J]. Equipment Manufacturing Technology, 2017(2):127-130(in Chinese).
[19] 李娜, 李玉龙,郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究[J]. 航空学报, 2008, 29(4):903-908. LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminum alloys under dynamic load[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):903-908(in Chinese).
[20] 秦宇, 沙智华, 刘宇. 基于不同前角的航空铝合金切削过程分析[J]. 航空制造技术, 2016(14):97-101. QIN Y, SHA Z H, LIU Y. Analysis of cutting process of aviation aluminum alloy based on different tool rake angles[J]. Aeronautical Manufacturing Technology, 2016(14):97-101(in Chinese).
[21] 刘旭阳. TC4钛合金动态本构关系研究[D]. 南京:南京航空航天大学, 2010:29-32. LIU X Y. Dynamic constitutive relationship of TC4 titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:29-32(in Chinese).
[22] 孟卫华, 王建军, 米栋, 等. 航空发动机用蜂窝材料应变率相关本构模型及应用研究[J]. 应用数学和力学, 2018, 39(6):665-671. MENG W H, WANG J J, MI D, et al. Application of strain-rate-dependent material models to aero-engine honeycomb casing analysis[J]. Applied Mathematics and Mechanics, 2018, 39(6):665-671(in Chinese).
Outlines

/